
1

Seventh FRAMEWORK PROGRAMME
FP7-ICT-2007-2 - ICT-2007-1.6

New Paradigms and Experimental Facilities

SPECIFIC TARGETED RESEARCH OR INNOVATION
PROJECT

Deliverable D3.5

“Experimental evaluation of path
availability estimation, network

recovery and resiliency techniques, and
profile-based accountability ”

Project description

Project acronym: ECODE
Project full title: Experimental Cognitive Distributed Engine
Grant Agreement no.: 223936

Document Properties

Number: FP7-ICT-2007-2-1.6-223936-D3.5
Title: Experimental evaluation of Technical Objective 2
Responsible: Philippe Owezarski
Editor(s): Guy Leduc
Contributor(s): François Cantin, Didier Colle, Goutam Das,
Benoit Donnet, Pierre Geurts, Guy Leduc, Steven Latré, Yongjun Liao,
Stijn Melis, Juan Narino, Dimitri Papadimitriou, Damien Saucez,
Wim Van de Meerssche, Wouter Tavernier, Bruno Willemaers
Dissemination level: Public (PU)
Date of preparation: 16th July 2010
Version: 1.1

2

D3.5 - Executive Summary

This deliverable is part of WP3 (Cognitive network and system experi-
mentation). The feasibility, benefits and applicability of introducing a cog-
nitive engine in the ECODE architecture are experimented using a number
of use cases covering different problem areas identified as Internet architec-
tural and design challenges.

In particular we address techniques for path availability estimation, for
improving network recovery and resiliency, and profile-based accountability.
The following three use cases are studied in depth:

• Path availability: the goal is to design and experiment techniques, em-
bedded in our so-called IDIPS server, to rank internet paths based on
their characteristics, such as delays, and available throughput. To this
end, on-line machine learning techniques are used to estimate future
path characteristics based on past measurements, in order to reduce
the future measurement load. Machine learning techniques are also
used to Improve Internet Coordinate Systems to better estimate de-
lays between nodes with scalable active delay measurements.

• Network recovery and resiliency: the goal is to reduce the recovery
time and increase the recoverability, when routes are updated in a
network. To this end, we design and experiment machine learning
techniques to minimize packet loss during rerouting and infer SRLGs
(Shared Risk Link Groups, i.e. sets of links that can fail all together)
in networks, and anticipate their occurrence very early.

• Profile-based accountability: the goal is to infer the demand subscribers
are requesting from the network, so that the network resources can
be fairly allocated and accountability properly imposed respecting the
contract subscribers have with their operator. To this end, we design
and experiment machine learning techniques to cluster customer pro-
files based on their network resource demands, and to classify cus-
tomers according to the learned profiles.

In a previous deliverable D3.4, we described the mapping of these use
cases onto the proposed ECODE architecture. In particular we have shown
how the functionalities of all the use cases are split among the Routing En-
gine (RE), Forwarding Engine (FE) and Machine Learning Engine (MLE) of
the architecture, and which message exchanges are necessary among these
components.

In this deliverable, we focus on the improved design of the learning algo-
rithm, their assessments mostly obtained by simulations, and early imple-
mentations in the Xorp environment.

From a research perspective, the main results of this deliverable can be
summarized as follows:

3

• We explain how IDIPS (our path ranking service) has been imple-
mented within XORP, an extensible open source routing platform. Our
implementation is based on three modules: Ranking, Prediction, and
Measurement. The Ranking module is in charge of dispatching re-
quests from Clients to other modules. The Measurement module is
used to measure path performance metrics, while the Prediction mod-
ule uses a Machine Learning technique (Normalized Least Squares)
to predict path performance metrics, so that we reduce the amount of
traffic injected in the network. In addition, we provide a first descrip-
tion on how we plan to evaluate IDIPS on the iLab platform.

• Internet Coordinate Systems (ICS) are promising techniques to predict
unknown network distances (typically delays) from a limited number of
measurements. Most ICS algorithms are based on metric space embed-
ding and suffer from the inability to represent distance asymmetries
and Triangle Inequality Violations (TIVs). To overcome these draw-
backs, we formulate the problem of network distance prediction as a
machine-learning problem, namely guessing the missing elements of a
distance matrix, and solve it by matrix factorization. A distinct feature
of our approach [1], called Decentralized Matrix Factorization (DMF),
is that it is fully decentralized. The factorization of the incomplete dis-
tance matrix is collaboratively and iteratively done at all nodes with
each node retrieving only a small number of distance measurements.
There are no special nodes such as landmarks nor a central node where
the distance measurements are collected and stored. We compare DMF
with two popular ICS algorithms: Vivaldi and IDES. Experimental
results show that DMF achieves competitive accuracy with the dou-
ble advantage of having no landmarks and of being able to represent
distance asymmetries and TIVs. The knowledge of estimated delays
between nodes can also be useful to select better paths for real-time
applications. We had proposed some methods that rely on the nodes
running an ICS to detect routing shortcuts in networks. We have now
evaluated more precisely the quality of the results provided by these
methods. Finally we explain a first implementation of an ICS within
XORP. We also analyze the memory and performance cost of our mod-
ule, and we explain how to improve this module for better integration
in the ECODE architecture.

• An accurate understanding or characterization of network traffic dy-
namics can improve network efficiency. Long-term traffic characteri-
zation enables network operators to dimension their networks accord-
ingly; short-term network traffic trends enable dynamic rerouting tech-
niques to efficiently use alternative paths in a network. We use state-
of-the-art network traffic models to model network traffic in a very
short timeframe (sub-second) as observed by an IP router during the
process of updating routing entries after failure detection. We study
the highly sensitive interaction of network traffic with the IP router
update process in detail and present a mathematical model to charac-

4

terize this process. The goal of this model is to optimize the process
of updating routing entries in an IP router with minimal packet loss.
For this, two optimization heuristics are formulated and are evaluated
together with state-of-the-art alternatives in a realistic simulation en-
vironment. The trade-off of several parameters in the model is char-
acterized, and we show that a gain in performance (decrease in packet
loss) can be achieved.

• In the OSPF data mining use case for shared risk link groups (SRLG)
identification, we use machine learning technique at the routers to
study the link state protocol (e.g., OSPF) data to predict the existence
of SRLG in the network. In particular, we use the correlation between
different link state updates (LSUs) issued by different network nodes
(routers) upon failure. The concerned network router then runs a
novel Bayesian network-based statistical learning process to construct
a state space model for representing and learning about the possible
existence of SRLGs. The decision of this online learning is transferred
to the routing information base (RIB) so that it can accordingly mod-
ify the routing table for the entire SRLG upon failure detection of one
of the candidate link of that particular SRLG and hence reduce the
protection switching time.

• With respect to the profile based accountability use case, this docu-
ment presents an analytical model of the problem. This model identi-
fies the different functions that need to be implemented through ma-
chine learning solutions. Different algorithmic options for implement-
ing these functions are described and the way they can be applied to
the specific problem is detailed. Furthermore, we discuss the experi-
mental set-up that has been built and that includes a traffic generator,
specifically built in the context of the ECODE project, that allows gen-
erating traffic traces on the iLab.t Virtual Wall based on the behaviour
of actual applications. The results of initial tests that apply the ma-
chine learning algorithms on the obtained traffic traces are presented.

5

List of Authors

UCL Benoit Donnet, Juan Narino, Damien Saucez

ULg François Cantin, Pierre Geurts, Guy Leduc, Yongjun Liao,
Bruno Willemaers

IBBT
Didier Colle, Goutam Das, Steven Latré,
Wim Van de Meerssche, Stijn Melis, Wouter Tavernier

ALB Dimitri Papadimitriou

6

List of Figures

2.1 IDIPS global view . 6
2.2 IDIPS flow diagram . 6
2.3 Schematic diagram of NLMS filtering 11
2.4 Prediction module architecture 11
2.5 IDIPS testbed on the iLab.t platform 12

3.1 The effect of the dimension (l) on the performance of DMF.
(k = 32, λ = 50) . 19

3.2 The effect of the number of neighbors (k) on the performance
of DMF. (l = 10, λ = 50) . 20

3.3 The effect of regularization coefficient (λ) on the performance
of DMF. (l = 10, k = 32) . 20

3.4 Results of different simulations. The simulations differ in the
initializations of the coordinates, in the selections of the neigh-
bors by each node and in the orders in which the nodes are up-
dated. It can be seen that the results are insensitive to these
differences. 21

3.5 The evolution of the coordinates, X(left subplot) and Y (right
subplot). 23

3.6 The differences between the predicted distance matrix at the
20th and the 100th iterations. 24

3.7 Comparison with IDES and Vivaldi. (l = 10, k = 32, λ = 50 for
DMF) . 24

3.8 Difference of Gr between the best shortcut and the best short-
cut detected . 29

3.9 Overview of the XORP module organization. 32
3.10 Snapshot of objects of the Vivaldi module. 33

4.1 IP backbone router about to update entries for three traffic flows 40
4.2 Packet loss under dynamic traffic conditions 42
4.3 Global evaluation process . 49
4.4 Flow activity and persistence per aggregation level 51

7

8 LIST OF FIGURES

4.5 Composition of bandwidth into several aggregated traffic flows
(24-bit subnets) . 51

4.6 Time series fitting of ARIMA vs. FARIMA using /8 subnet and
.1 s binsize . 53

4.7 RUP strategy vs. loss . 55
4.8 Batch size vs. packet loss . 56
4.9 Traffic model vs. packet loss . 56
4.10 Swapping time vs. packet loss 57

5.1 Example network topology . 60
5.2 Link state update sequence for different link failure 60
5.3 State space model formulation example 61
5.4 Time sequence of LSA grouping algorithm 62
5.5 State space model for the first group (D, B) of Fig. 5.2 63
5.6 State space model for the second group (H, D, B) of Fig. 5.2 . . 64
5.7 Router architecture along with SRLG decision flow diagram . 68
5.8 Percentage of false positive and negative with number of fail-

ure iteration (disjoint SRLGs) 70
5.9 Percentage of false positive and false negative with number of

failure iteration (SRLGs with one common node) 71
5.10 Percentage of false positive and false negative with number of

failure iteration (SRLGs with two common nodes) 71

6.1 Determination of the deviation of a profile 84
6.2 Example of Scenario Description GUI 85
6.3 Example of XML Scenario Description 85
6.4 Bandwidth usage of scenario A 86
6.5 Classification done by means of the J48 algorithm 86
6.6 Decision Tree generated by means of the J48 algorithm 87

Table of contents

1 Introduction 1
1.1 Scope of Deliverable . 1
1.2 Structure of Document . 3

2 Intelligent Path Ranking Using IDIPS 5
2.1 XORP Implementation . 5

2.1.1 Overview . 5
2.1.2 Ranking . 6
2.1.3 Measurement . 8
2.1.4 Prediction . 9

2.2 iLab Planned Experimentations 11

3 Delay estimation and delay-based path selection and routing 13
3.1 Network Distance Prediction Based on Decentralized Matrix

Factorization . 14
3.1.1 Introduction . 14
3.1.2 Matrix Factorization for Network Distance Prediction . 15
3.1.3 Decentralized Matrix Factorization for Network Dis-

tance Prediction . 16
3.1.4 Experiments and Evaluations 17

3.1.4.1 Parameter Tuning 19
3.1.4.2 Analysis of Convergence and Stability 21
3.1.4.3 Comparisons with Vivaldi and IDES 22

3.1.5 Conclusions and Future Works 22
3.2 Finding routing shortcuts . 25

3.2.1 Problem Formalization 25
3.2.2 Implementation . 25
3.2.3 Experimentation and evaluation 27

3.2.3.1 Performance of our routing shortcut detection
criteria . 27

i

3.2.3.2 Detection of the best shortcuts 28
3.2.3.3 Ranking of the detected nodes 29

3.2.4 Conclusion and Future Work 31
3.3 Implementation of an Internet Coordinates System within XORP 31

3.3.1 Introduction . 31
3.3.2 General overview . 32

3.3.2.1 Module place within XORP architecture . . . 32
3.3.2.2 Organization of the Vivaldi Module 33

3.3.3 Discussions . 35
3.3.3.1 About message exchanges 35
3.3.3.2 About bootstrapping 35
3.3.3.3 About choosing the peers 36
3.3.3.4 About measurement 36

3.3.4 Evaluation . 37
3.3.4.1 Memory cost . 37
3.3.4.2 Performance . 37

3.3.5 Future work . 37

4 Minimizing packet loss during re-routing 39
4.1 Introduction . 39
4.2 Problem statement . 39
4.3 Formalization of the RUP under changing traffic conditions . 41

4.3.1 Packet loss . 41
4.3.2 Heuristics for minimizing packet loss during the RUP . 41
4.3.3 Fixed batch size . 42
4.3.4 Variable batch size . 43

4.4 Modeling traffic dynamics . 44
4.4.1 AutoRegressive Moving Average models 45
4.4.2 (Fractionally) Integrated models 46

4.5 Experimental validation . 47
4.5.1 Platform choice . 47
4.5.2 Network traffic analysis and preprocessing 50
4.5.3 Fitting traffic models . 50
4.5.4 Packet-loss minimization 52

4.5.4.1 Strategy vs. packet loss/recovery time 54
4.5.4.2 Batch size vs. packet loss/recovery time 55
4.5.4.3 Traffic model vs. packet loss 55

ii

4.5.4.4 Swapping time vs. packet loss 57
4.6 Conclusion . 57

5 Data Mining with OSPF updates to identify shared risk link
group (SRLG) 59
5.1 Formalization of the technical problem 59
5.2 Learning phase . 60
5.3 Decision making phase . 66
5.4 Protection time reduction phase 67
5.5 Result and Discussion . 69

6 Profile-based accountability 73
6.1 Formalization of the problem 74
6.2 Approach taken . 75
6.3 Determination of action profiles 76

6.3.1 K-means . 77
6.3.2 C4.5 Decision Tree Classifcation 78
6.3.3 Employed attributes . 79

6.4 Deviation of subscribed profile 79
6.5 Implementation . 80

6.5.1 Network model . 80
6.5.2 Traffic generation . 80

6.5.2.1 Scenario description input 80
6.5.2.2 Converting a requested emulated topology into

a wall topology 80
6.5.2.3 Assigning IPs and setting up routing. 81
6.5.2.4 Setting up bandwidth limitations 81
6.5.2.5 Simulating servers 81
6.5.2.6 Client simulation 82
6.5.2.7 Network monitoring 82
6.5.2.8 Starting and stopping simulations, and mov-

ing results . 82
6.6 Experimental results . 82
6.7 Future work . 83

7 Conclusion 89

References 92

iii

iv

Chapter 1

Introduction

1.1 Scope of Deliverable

This deliverable is part of WP3 (Cognitive network and system experi-
mentation), which is an experimental work package that started at M03.
The feasibility, benefits and applicability of introducing a cognitive engine
in the network elements are experimented using a number of use cases cov-
ering different problem areas identified as Internet architectural and de-
sign challenges (manageability, security, availability, routing scalability and
quality). WP3 comprises three tasks (T3.1, T3.2, and T3.3) that are ded-
icated to the experimental phase 1. Each of these tasks is associated with
the networking scientific and technical objectives, including prototype devel-
opment, setting up the test environment and performing the actual testing.
Three types of hands-on experimental tasks are planned in this work pack-
age:

• T3.1: Experimentation on Technical Objective 1 (TO1) addressing adap-
tive traffic sampling and management, path performance monitoring,
and intrusion and attack/anomaly detection techniques;

• T3.2: Experimentation on Technical Objective 2 (TO2) addressing tech-
niques for path availability estimation, for improving network recovery
and resiliency, and profile-based accountability;

• T3.3: Experimentation on Technical Objective 3 (TO3) addressing tech-
niques to improve routing system scalability and quality (convergence,
stability/robustness, and stretch).

For each Technical Objective (and in particular for TO2, which is the
topic of this deliverable), use-case driven experimentation are performed on
the cognitive engine (network and system architecture) elaborated in WP2.
The experimentation of the different networking scientific and technical ob-
jectives will use different test settings and running conditions.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 1

This deliverable D3.5 focuses on Technical Objective 2 (TO2), which is
composed of the following three use cases:

b1) Path availability (UCL and ULg)

• Design and experiment techniques, embedded in our so-called IDIPS
server, to rank internet paths based on their characteristics, such as
delays, and available throughput;

• Find and experiment on-line machine learning techniques to estimate
future path characteristics based on past measurements, in order to
reduce the future measurement load;

• Design, implement and test a new Internet Coordinate System, which
is a distributed machine learning engine to better estimate delays be-
tween nodes with scalable active delay measurements;

• Design and experiment criteria, based on node coordinates and some
measured delays, to discover appropriate routing shortcuts.

b2) Network recovery and resiliency (IBBT and ALB)

• Reduce the recovery time and increase the recoverability, when routes
are updated in a network;

• Design and experiment machine learning techniques to minimize packet
loss during rerouting;

• Design and experiment machine learning techniques to infer SRLGs
(Shared Risk Link Groups) in networks, i.e. sets of links that can fail
all together;

• Design and experiment machine learning techniques to anticipate the
occurrence of SRLGs very early.

b3) Profile-based accountability (IBBT)

• Infer the demand subscribers are requesting from the network, so that
the network resources can be fairly allocated and accountability prop-
erly imposed respecting the contract subscribers have with their oper-
ator;

• Design and experiment machine learning techniques to cluster cus-
tomer profiles based on their network resource demands;

• Design and experiment machine learning techniques to classify cus-
tomers according to the learned profiles.

1.2 Structure of Document

The path availabity use case (b1) is addressed in chapters 2 and 3. The
former presents an implementation of the IDIPS architecture, in XORP, pro-
posed for intelligent ranking of Internet paths. In this context, machine
learning techniques are designed to estimate future path characteristics
based on past measurements, in order to reduce the future measurement
load. Chapter 3 complements this approach by designing, evaluating and
implementing a new Internet Coordinate System as a novel distributed ma-
chine learning engine, with the goals of estimating delays accurately and
finding low delay (shortcut) paths in a scalable manner.

The network recovery and resiliency use case (b2) is addressed in chap-
ters 4 and 5. In chapter 4, packet loss during re-routing is minimized by
accelerating the updates of the router FIBs (Forwarding Information Base).
This is done by updating the major flows first and by grouping the updates
into batches of optimal sizes. In chapter 5, routing update messages are
used to identify Shared Risk Link Groups (SRLGs) and thereby anticipate
their occurrence very early, e.g. by deciding whether a link failure is likely
to be isolated or followed by all the other link failures in a SRLG.

Chapter 6 addresses profile-based accountability, whose aim is to infer
the demand subscribers are requesting from the network, so that the net-
work resources can be fairly allocated and accountability properly imposed
respecting the contract subscribers have with their operator. For this pur-
pose, an analytical model of the problem is proposed, which identifies the dif-
ferent functions that need to be implemented through machine learning so-
lutions. Different algorithmic options for implementing these functions are
described, the experimental set-up on the iLab.t Virtual Wall is discussed,
and results of initial tests are presented.

Chapter 7 concludes this deliverable. It summarizes the main contribu-
tions and describes future work.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 3

Chapter 2

Intelligent Path Ranking Using
IDIPS

ISP-Driven Informed Path Selection (IDIPS) [2, Chapter 2] is a service
aiming at ranking paths according to their performance. To be able to make
path ranking, IDIPS needs, from one hand, to collect path performance infor-
mation, store it, and, on the other hand, collect path ranking requests and
process them with a ranking algorithm.

When a ranking request arrives, IDIPS computes a cost for each feasible
path in the request. It then groups paths of similar costs within the same
rank and informs the requester of the path ranks.

The machine learning aspect related to IDIPS concerns the path informa-
tion collection. This collect might be done in two ways: actively (i.e., probes
are injected into the network) or passively (i.e., information is silently col-
lected). As active probing is intrusive and resource greedy, we propose to
consider machine learning techniques to infer active probing results without
injecting traffic (or at least reducing the amount of traffic) in the network.

In this chapter, we explain how IDIPS has been implemented within
XORP [3], an extensible open source routing platform.

We first focus on the implementation (Sec. 2.1) and, next, explain our
plans for evaluating our implementation under the iLab infrastructure (Sec. 2.2).

2.1 XORP Implementation

2.1.1 Overview

Fig. 2.1 gives a global overview of the three IDIPS modules and how they
interact with each others. In our implementation, we consider three mod-

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 5

IDIPS

Ranking Predictions

Measurements

Figure 2.1: IDIPS global view

Client Ranking Measurement Prediction

rank paths
start measurements

prediction request

∀ new path

∀ path

get path rank

finish ranking

until !more ∨
enough paths

create new model

Figure 2.2: IDIPS flow diagram

ules:

• Ranking (Sec. 2.1.2). This module is in relationship with the Client
(i.e., the “application” asking for a path ranking) and aims at providing
the raking of the paths.

• Prediction (Sec. 2.1.4). This module is in charge of prediction path
performance metrics (delay, bandwidth, . . .) and aims at reducing the
need of network measurements

• Measurement (Sec. 2.1.3). This module performs network measure-
ments to evaluate path performance metrics.

We see that the Ranking module is in charge of dispatching request to
the Prediction and Measurement modules.

2.1.2 Ranking

The Ranking module is in charge of receiving and processing the ranking
requests received from the Clients. A request sent by a Client is always
composed of three information:

• a list of sources.

• a list of destinations.

• a ranking criterion.

The sources and destinations correspond to the source and destination
addresses the Client wants to compare in order to select the best pair. The
Ranking module generates all possible paths from these addresses. A path
is a (source, destination) pair, the source and destination belonging to the
lists provided by the Client request. The criterion refers to the technique
that must be used to rank the paths. A typical ranking technique is the
delay, but one could imagine other techniques like monetary cost or any
combination of metrics (see [4] for details).

Fig. 2.2 illustrates the lifetime of a ranking request. As illustrated, it
works in three steps. First, the Client sends the request with the parame-
ters discussed above. Next, the Ranking module computes the paths, their
performance according to the criterion requested by the Client, and rank
them. As a consequence, the Client can request for obtaining one-by-one the
paths, the best being the first. It is worth to notice that the paths can be
retrieved by the Client only after the Ranking module succeeded in deter-
mining the performance and the ranking itself.

The Ranking modules conserves a map of ranking instances. Each rank-
ing instance is bounded to a request via a unique identifier (a Transaction
ID or TID). A ranking instance consists of a list of paths and a ranking cri-
terion. Once the performance of each path in a ranking instance is known,
the ranking is computed and the instance is tagged as ready. When a rank-
ing instance is ready, the Client can retrieve the rank of each path. If a
client tries to get the path ranks before the instance is marked as ready, it
generates an error.

Instead of providing directly the list of paths with their associated rank,
the path ranking retrieval work on a per-path basis. It means that the Client
can only ask one path at a time. Basically, the Client asks for the best
remaining paths (i.e., the paths that it has not yet retrieved). The Ranking
module then pops the best path still in the list and removes it from the list.
The idea behind this technique is that Clients often only need the best path,
not all of them. Once the Client has enough information, it might simply
ask the Ranking module to terminate. This destroys the ranking instance.

The architecture we propose has the key advantage of being very simple
to implement and lightweight on the Client side. However, it means that
a ranking result cannot be used several times. If a Client needs to use it
several times, it has to implement locally a cache for storing all the ranked
paths. Remind that a ranking instances lives until it is explicitly destroyed
by a Client or if all the paths have been returned to the Client.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 7

Every ranking request is considered as being different but it is possible
that a path appears in several requests. To avoid duplicating the path infor-
mation, the path management inside IDIPS is decoupled from the ranking
requests.

It is then possible to create a path independently of a ranking request.
Creating a path consists first of abstracting it. A path is a collection of
attributes (e.g., a source, a destination, . . .) that is uniquely identified by an
integer. Every time an operation has to be performed on a path, the action
is started by providing the identifier, exclusively. If the action needs more
information, it resolves the path from the identifier. When a path is created,
a prediction model and a measurement instance are created. The prediction
module is discussed later in Sec. 2.1.4 and the measurements are explained
in Sec. 2.1.3. If a received ranking request involves a path that has not
been created yet, it is created at the runtime and all the measurement and
predictions models are created. We do not recommend to write clients that
use path not created before.

2.1.3 Measurement

The Measurement module aims at performing path performance mea-
surements for paths. Interesting metrics are delay, jitter, throughput, . . .

For each metric, the Measurement module maintains a map associating
a path identifier with the metric value of the last measurement. Periodically,
a method traverses the map and determines which path has to be measured
again. The path is then measured. To measure the path, its identifier has
first to be resolved into a (source, destination) pair. Therefore, before do-
ing a measurement, the Measurement module queries the Ranking module
(which stores all the paths and their identifier) to obtain the pair. A reso-
lution cache could be implemented but we do not have observed the need of
such a cache yet.

If a module needs to know the current value of a metric for a given path,
it can send a measurement_request to the Measurement module. The
Measurement module will give the last observation it has. It is worth to
notice that sending a measurement request will not trigger a measurement,
it is only a lookup in the measurement cache that maintains the last obser-
vation for each path.

Measurements are performed for a given path until an explicit stop_measurement
request is received for this path.

2.1.4 Prediction

In order to predict any of the path performance metrics, it is necessary
to have a model per (source, destination) pair. This could lead to scalability
issues, since some time series prediction methods have high computational
and storage requirements. Most of today time series prediction methods,
like ARMA, Kalman Filtering, Support Vector Regression, require of two
things:

• A large amount of data samples to learn from. This is usually what is
known in machine learning terms as the train set. This would have to
be obtained live, once the router is running.

• Estimation of the parameters of the models, which is known as train-
ing. This can be computationally expensive, depending on the size of
the training set. This is further compounded by the fact that the train-
ing must be run for each model to be predicted, which can take a con-
siderable time if the system considers a large amount of models.

• Some of the models do not handle well changes in the statistical prop-
erties of the data (nonstationarity). As a result, changes in the signal
impact negatively the prediction.

The alternative selected for our XORP implementation is to do prediction
via adaptive filtering, particularly, Normalized Least Mean Squares (NLMS)
adaptive filtering. Adaptive filtering presents some key advantages in terms
of scalability compared to other methods:

• No large amount of data samples is required. An adaptive filter adjusts
its parameters as data becomes available. Although certain amount of
data samples is required for convergence, it is much less than for other
models.

• The memory requirements are very low. It is enough to keep track of
some coefficients and some constants.

• The training phase is not necessary. The filter finds its parameters on
the fly, as data arrives.

• Adaptive filters change their parameters automatically to follow changes
in the statistical properties of the data.

• Forecasting is very fast. Only one dot product is required.

The drawback of adaptive filters is that accuracy is lower when com-
pared to other methods. However, preliminary experiments with actual data

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 9

show that the accuracy obtained with this method is still within acceptable
bounds.

In the most simplest terms, in order to do prediction an NLMS filter can
be seen as an autoregressive system whose weights are adjusted dynami-
cally in order to improve prediction. If wi are the weights, and xi are the
previous samples of the signal we are trying to predict, the prediction, de-
fined as ŷt, is found as:

ŷt =
N∑
i=0

wi · xi (2.1)

The error of the prediction et = ŷt− yt is used for updating the weights in
a way that the predictions adapt in an optimal way, in a least squares sense
(LMS). In order to avoid numerical instability, the weights wi are normalized
by the energy of the signal. The weights update equation is:

wt+1 = wt +

 β · xt(
ε+

√
|xt|2

) ∗ et
 (2.2)

where each term is explained below:

• wt and wt+1 are the weights at time step t and t+ 1.

• β: This is the constant that indicates the rate of adjustment of the
weights, also known as the learning rate.

• ε: This is a small constant term that is added just in the case that via
numerical instabilities, the denominator becomes too small, so a small
adjustment is provided such that the weights do not grow too fast.

• sqrt|xt|2: This term is added to normalize the weights, in a way that
big changes on the input signal scale will not imply huge changes on
the weights, thus bringing undesired instability.

In this way, by changing the weights in an optimal way that minimizes
the least square error of the prediction with respect to the actual value is
minimized, the filter adapts to changes in the input signal. This represents
an advantage since some of the data present abrupt jumps due to changes in
the routes, as a result, adaptivity is a desirable feature. Fig. 2.3 illustrates
how NLMS filtering works.

The architecture of the Prediction module is shown on Fig. 2.4.

In order to keep the system scalable, a map was chosen as the main data
structure. This allows one for fast data lookups and for maintaining the

Figure 2.3: Schematic diagram of NLMS filtering

Prediction
- delay data: map<int, LMSFilter>
- th map: map<int, LMSFilter>

+ create new model()
+ delete model()
+ prediction request()
+ insert new data()

+ advance LMS Filter
+ get prediction()
+ insert data LMS Filter()

- Weights
- AR Window
- AR Order
- Beta

LMSFilter

In
te

rf
ac

e
an

d
u
p
d
at

in
g

measurement request

prediction request

create path

delete path

Figure 2.4: Prediction module architecture

relevant models. There are two maps, each one being dedicated for LMS in-
stances for a path performance metric (i.e., delay or throughput) for (source,
destination) pairs.

The “Prediction module” is in charge of managing maps and routing cor-
rectly requests to the LMS filter. The “Interface and updating” is in charge
of handling communication with other modules via XRL (see [5] for details).

2.2 iLab Planned Experimentations

IDIPS will be evaluated on the iLab.t testbed. The evaluation will in-
volve two IDIPS servers and 50 Clients, as illustrated on Fig. 2.5. Path
performance will be both synthetic and real. The considered path ranking
criterion will be the delay.

We plan our experiment being on four phases:

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 11

p
er

fo
rm

an
ce

ge
n
er

at
or

Clients
Ranking
requests

Path
measurements

IDIPS

Figure 2.5: IDIPS testbed on the iLab.t platform

1. Phase 1: This first phase is a proof of concept to see if the implemen-
tation works as expected on iLab.t. It is based on a single Client, a
single IDIPS server and four paths. The Client sends one request to
the IDIPS server, asking the ranking of four paths. The path perfor-
mance generator (dummynet or any equivalent tool provided by the
iLab.t infrastructure) is in charge of providing various path dynamics.
During this first phase, the paths are purely emulated, so that we are
sure that all parameters are under control.

2. Phase 2: This second phase aims at determining the scalability of the
system. It involves up to 50 Clients, a single IDIPS server and up to
1,000 paths. The Clients send their ranking paths requests in parallel.
It is worth to notice that the paths to rank might be shared between
Clients but might also be specific to a given Client. The idea is to
consider several runs with various number of Clients and paths to rank
in order to see if the system scales. In particular, we are interested in
studying the evolution of processing time and memory usage.

3. Phase 3: In this third phase, our aim is to validate the consistency of
the IDIPS ranking. It involves a single Client, two IDIPS servers, and
up to 100 paths. The Client sends simultaneously the same requests
to both IDIPS server. The ranking replied by both servers should be
identical or, at least, the same according to the selected criterion.

4. Phase 4: The last phase is identical to the previous but “in the wild”,
i.e., we will repeat the first three phases with measurements to real
paths through the Internet instead of of artificially generating path
performance metric.

Chapter 3

Delay estimation and
delay-based path selection and
routing

Internet Coordinate Systems (ICS) are promising techniques to predict
unknown network distances from a limited number of measurements. Most
ICS algorithms are based on metric space embedding and suffer from the
inability to represent distance asymmetries and Triangle Inequality Viola-
tions (TIVs). To overcome these drawbacks, we formulate the problem of
network distance prediction as guessing the missing elements of a distance
matrix and solve it by matrix factorization. A distinct feature of our ap-
proach, called Decentralized Matrix Factorization (DMF), is that it is fully
decentralized. The factorization of the incomplete distance matrix is collab-
oratively and iteratively done at all nodes with each node retrieving only a
small number of distance measurements. There are no special nodes such
as landmarks nor a central node where the distance measurements are col-
lected and stored. We compare DMF with two popular ICS algorithms: Vi-
valdi and IDES. The former is based on metric space embedding, while the
latter is also based on matrix factorization but uses landmarks. Experimen-
tal results show that DMF achieves competitive accuracy with the double
advantage of having no landmarks and of being able to represent distance
asymmetries and TIVs.

The knowledge of estimated delays between nodes can be useful to select
better paths for real-time applications (refer to chapter 2 on IDIPS for a
more detailed explanation on path selection). However, since the Internet
was not developed with QoS guarantees in mind, the default route between
two nodes is not guided by QoS constraints (and, in particular, by constraints
on the delays). In many cases the route between two nodes A and B chosen
by the network is not the lowest-delay path and it is possible to find nodes
C that are shortcuts in term of delays:

RTT (A,B) > RTT (A,C) +RTT (C,B)

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 13

where RTT (X, Y) is the RTT1 (Round Trip Time) between the nodes X and
Y . For any path AB in a network, our objective is to find some nodes C that
are shortcuts in terms of delays. If we are able to find these shortcuts we
will be able to provide a better service to the applications using the network
: instead of sending the data directly from A to B, we will use a node C as
relay in order to obtain smaller delays. Therefore, in this chapter we will
also propose some methods that rely on the nodes running an ICS to detect
useful routing shortcuts in networks.

Finally we will explain a first implementation of an ICS in the XORP
environment.

3.1 Network Distance Prediction Based on De-
centralized Matrix Factorization

3.1.1 Introduction

Predicting network distances (e.g. delay) between Internet nodes is ben-
eficial to many Internet applications, such as overlay routing [6], peer-to-
peer file sharing [7], etc. One promising approach is Network Coordinate
Systems (NCS), which construct models to predict the unmeasured network
distances from a limited number of observed measurements [8].

Most NCS algorithms embed network nodes into a metric space such
as Euclidean coordinate systems in which distances between nodes can be
directly computed from their coordinates. For example, GNP [9] is the first
system that models the Internet as a geometric space. It first embeds a
number of landmarks into the space and a non-landmark host determines
its coordinates with respect to the landmarks. Vivaldi [10] is a decentralized
NCS system that extends GNP by eliminating the landmarks. It simulates
a system of springs where each edge is modeled by a spring and the force of
the spring reflects the approximation error.

However, network distances do not derive from the measurements of a
metric space. For example, Triangle Inequality Violations (TIVs) have been
frequently observed and the distances between two nodes are not necessar-
ily symmetric due to the network structure and routing policy [11, 12, 13, 10,
14]. No algorithm based on metric space embedding can model such distance
space. IDES [15] is one of the few algorithms using non-metric space em-
bedding techniques. It is based on matrix factorization which approximates
a large matrix by the product of two small matrices. A drawback of IDES is
that, similar to GNP, IDES also relies on landmarks. It factorizes a small

1The RTT between two nodes X and Y is the time necessary to travel in the network
from X to Y and go back to X from Y .

distance matrix built from the landkmarks at a so-called information server
and other non-landmark nodes compute their coordinates with respect to
the landmarks. Phoenix extends IDES by adopting a weight model and a
non-negativity constraint in the factorization to enforce the predicted dis-
tances to be positive [16]. In practice, NCS systems with landmarks are less
appealing. They suffer from landmark failures and overloading. Further-
more, the number of landmarks and their placement affect the performance
of NCS.

In this paper we propose a novel approach, called Decentralized Matrix
Factorization (DMF), to predicting network distance. Unlike IDES, we seek
to factorize a distance matrix built from all nodes in a fully decentralized
manner. Each node retrieves distance measurements from and to a small
number of randomly selected nodes1 and updates its coordinates simulta-
neously and iteratively. There are no special nodes such as landmarks or
a central node where distance measurements are collected and stored. In
doing so, our DMF algorithm overcomes the drawbacks of metric space em-
bedding and is able to represent asymmetric distances and TIVs, while it is
fully decentralized and requires no landmarks. Experimental results show
that DMF is stable and achieves competitive performance compared to IDES
and metric space embedding based algorithms such as Vivaldi.

The rest of the paper is structured as follows. Section 2 formulates the
problem of network distance prediction by matrix factorization. Section 3
describes the DMF algorithm. Section 4 presents the evaluation and the
comparison of DMF with other competing methods. Section 5 gives the con-
clusions and discusses future work.

3.1.2 Matrix Factorization for Network Distance Pre-
diction

Matrix Factorization seeks an approximate factorization of a large ma-
trix, i.e.,

D ≈ D̂ = XY T ,

where the number of columns in X and Y is typically small and is called
the dimension of the embedding space. Generally, the factorization is done
by minimizing ||D− D̂||2, which can be solved analytically by using singular
value decomposition (SVD) [17]. In many cases, constraints can be imposed
in the minimization. A popular and useful constraint is that elements of
X and Y are non-negative. This so-called non-negative matrix factorization
(NMF) can only be solved by iterative optimization methods such as gradient
descent [18]. Note that matrix factorization has no unique solution as

D ≈ D̂ = XY T = XGG−1Y T ,

1We will refer to the selected nodes as neighbors in the rest of the paper.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 15

where G is any arbitrary non-singular matrix. Therefore, replacing X by
XG and Y by G−1Y will not increase the approximation error.

In using matrix factorization for network distance prediction, assuming
n nodes in the network, a n× n distance matrix D is constructed with some
distances between nodes measured and the others unmeasured. To guess
the missing elements in D, we factorize D into the form D ≈ XY T by solving

min ||W. ∗ (D −XY T)||2, (3.1)
where .∗ is element-wise product and W is the weight matrix with wij = 1 if
dij, the distance from i to j, is measured and 0 otherwise. X and Y are of the
same size n× l with l� n. l is referred to as the dimension of the embedding
space and is a parameter of the factorization algorithm.

With missing elements, the minimization of eq. 3.1 can only be solved by
iterative optimization methods. After the factorization, each node is then
associated with two coordinates xi and yi, where xi is the ith row of X, called
outgoing vector, and yi is the ith row of Y , called incoming vector. The esti-
mated distance from i to j is

d̂ij = xi · yj, (3.2)

where · is the dot product. If done properly, the estimated distance, d̂ij,
approximates the measured distance, dij, within a limited error range. Note
that d̂ij is not necessarily equal to d̂ji.

The above process is centralized and requires a large number of distance
measurements to be collected and stored at a central node. To solve this
problem, IDES [15] proposed to select a small number of landmarks and
compute, at a so-called information server, the factorization (by using SVD
or NMF) of a small distance matrix built only from measured distances be-
tween the landmarks. Once the landmark coordinates have been fixed, a
non-landmark host can determine its coordinates by measuring its distance
to and from each of the landmarks and finding coordinates that most closely
match those measurements. As mentioned earlier, the use of landmarks
is a weakness of IDES. In the next section, we will propose our approach
based on a decentralized matrix factorization that eliminates the need for
landmarks.

3.1.3 Decentralized Matrix Factorization for Network
Distance Prediction

The problem is the same as in eq. 3.1, but we seek to solve it in a decen-
tralized manner. Similar to IDES, each node records its outgoing vector xi
and incoming vector yi and computes distances from and to other nodes by
using eq. 3.2. The difference is that xi and yi are initialized randomly and
updated continuously with respect to some randomly-selected neighbors.

In particular, to update xi and yi, node i randomly selects k neighbors,
measures its distances from and to them, and retrieves the outgoing and
incoming vectors. Denote Xi = [xi1 ; . . . ;xik] and Yi = [yi1 ; . . . ; yik] the out-
going and incoming matrices built from the neighbors of i, i.e., xij and yij
are the outgoing and incoming vectors of the jth neighbors of i. Let dito =
[di,i1 , . . . , di,ik] and difrom = [di1,i, . . . , dik,i] the distance vectors to and from the
neighbors of i. Then, xi and yi are updated by

xi = arg min
x

||xY T
i − dito||2, (3.3)

yi = arg min
y

||Xiy
T − difrom

T ||2. (3.4)

Eqs. 3.3 and 3.4 are standard least square problems of the formmin||Ax−
b||2, which has an analytic solution of the form:

x = (ATA)−1AT b. (3.5)

To increase the numerical stability of the solution, instead of solving eqs. 3.3
and 3.4 with eq 3.5, we penalize xi and yi and solve regularized least square
problem of the formmin||Ax−b||2+λ||x||2, which also has an analytic solution

x = (ATA+ λI)−1AT b, (3.6)

where λ is the coefficient of the regularization term. In the experimental
section, we will show the influence of the regularization terms on the perfor-
mance of DMF.

To summarize, the update equations of xi and yi are

xi = ditoYi(Y T
i Yi + λI)−1 (3.7)

yi = difromXi(XT
i Xi + λI)−1 (3.8)

The DMF algorithm is given in Algorithm 12. We initialize the coordinates
with random numbers uniformly distributed between 0 and 1. Empirically,
we found that DMF is insensitive to the random initialization of the coordi-
nates.

3.1.4 Experiments and Evaluations

In this section, we evaluate DMF3 and compare it with two popular NCS
algorithms: Vivaldi and IDES. The former is based on metric space embed-

2Note that we can also adopt the weight model and the non-negativity constraint as
in [16]. However, the constrained minimization in eqs 3.3 and 3.4 have no more closed
form solutions and has to be solved by iterative optimization methods. As claimed in [15],
which is confirmed by our experiments, the non-negativity constraint does not improve the
accuracy a lot, but significantly increases the computing time.

3A matlab implementation of DMF used to generate the results in the paper can be
downloaded from http://www.run.montefiore.ulg.ac.be/~liao/DMF.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 17

http://www.run.montefiore.ulg.ac.be/~liao/DMF

Input: D, l, k, λ
D: distance matrix with missing elements
l: dimension of the embedding space
k: number of neighbors of each node
λ: regularization coefficient
Output: X,Y
foreach node i do

Randomly select k neighbors from the network.
Randomly initialize xi and yi.
while forever do

retrieve dito, difrom, Xi, Yi;
update xi by eq. 3.7
update yi by eq. 3.8
sleep some time

end
end

Algorithm 1: DMF: Decentralized Matrix Factorization with Regulariza-
tion.

ding, while the latter is also based on matrix factorization but uses land-
marks. All the experiments are performed on two typical data sets col-
lecting real Internet measurements: the P2psim [19] data set which con-
tains the measured distances between 1740 Internet DNS servers, and the
Meridian [20] data set which contains the measured distances between 2500
nodes. While DMF can in principle handle asymmetric distance matrices, in
our experiment, we took di,j = dj,i and defined these distances as the half of
the round-trip-time between nodes i and j. The same assumption is adopted
in Vivaldi and has the advantage of greatly simplifying the implementation
of the algorithm, as measuring one-way delay is difficult in practice.

In the simulations, we randomly selected a node and updated its coordi-
nates at each step. An iteration of a simulation is defined by a fixed round
of node updates. Since Vivaldi updates its coordinates with respect to only
one neighbor in contrast to DMF that does it with respect to all neighbors,
an iteration in Vivaldi is defined by n × k node updates whereas in DMF
an iteration is n node updates, where n is the number of nodes and k is
the number of neighbors. In doing so, we ensure that, on average, all nodes
have a chance to update their coordinates with respect to all neighbors. Note
that IDES is not an iterative method. The coordinates of the nodes are un-
changed.

We examine the following classical evaluation criteria.

• Cumulative Distribution of Relative Estimation Error Relative Estima-
tion Error (REE) is defined as

REE = |d̂i,j − di,j|
di,j

.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Relative error

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

2d
3d
4d
5d
6d
7d
8d
9d
10d

(a) P2psim: REE

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

Iteration

S
tr

es
s

2d
3d
4d
5d
6d
7d
8d
9d
10d

(b) P2psim: Stress

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Iteration

M
ed

ia
n

 p
re

d
ic

ti
o

n
 e

rr
o

r(
m

s)

2d
3d
4d
5d
6d
7d
8d
9d
10d

(c) P2psim: MAEE

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Relative error

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

2d
3d
4d
5d
6d
7d
8d
9d
10d

(d) Meridian: REE

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

Iteration

S
tr

es
s

2d
3d
4d
5d
6d
7d
8d
9d
10d

(e) Meridian: Stress

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Iteration

M
ed

ia
n

 p
re

d
ic

ti
o

n
 e

rr
o

r(
m

s)

2d
3d
4d
5d
6d
7d
8d
9d
10d

(f) Meridian: MAEE

Figure 3.1: The effect of the dimension (l) on the performance of DMF. (k =
32, λ = 50)

• Stress measuring the overall fitness of the embedding is defined as

stress =

√√√√∑i,j (di,j − d̂i,j)2∑
i,j di,j

2 .

• Median Absolute Estimation Error (MAEE) is defined as

MAEE = mediani,j(|di,j − d̂i,j|).

Note that our DMF algorithm utilizes only a small percentage of the dis-
tance measurements in the datasets to estimate the coordinates of the nodes,
but the evaluation of the above criteria is done using all distance measure-
ments.

3.1.4.1 Parameter Tuning

DMF has three parameters to be defined: l, the dimension of the em-
bedding space, k, the number of neighbors of each node, and λ, the regu-
larization coefficient. We study the influence of these parameters on the
performance of DMF. To this end, we tune one parameter at a time while
fixing the other two. Results are shown in Figures 3.1, 3.2 and 3.3.

It can be seen that l does not seem to affect the performance of DMF
as long as l ≥ 3 which coincides with the conclusion drawn in [10] about
Vivaldi. We nevertheless recommend l = 10 as it does not pose any problem

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 19

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Relative error

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

16
32
64
128
256

(a) P2psim: REE

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Iteration

S
tr

es
s

16
32
64
128
256

(b) P2psim: Stress

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Iteration

M
ed

ia
n

 p
re

d
ic

ti
o

n
 e

rr
o

r(
m

s)

16
32
64
128
256

(c) P2psim: MAEE

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Relative error

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

16
32
64
128
256

(d) Meridian: REE

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Iteration

S
tr

es
s

16
32
64
128
256

(e) Meridian: Stress

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Iteration

M
ed

ia
n

 p
re

d
ic

ti
o

n
 e

rr
o

r(
m

s)

16
32
64
128
256

(f) Meridian: MAEE

Figure 3.2: The effect of the number of neighbors (k) on the performance of
DMF. (l = 10, λ = 50)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Relative error

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

λ=0
λ=5
λ=50
λ=100
λ=500

(a) P2psim: REE

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Iteration

S
tr

es
s

λ=0
λ=5
λ=50
λ=100
λ=500

(b) P2psim: Stress

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Iteration

M
ed

ia
n

 p
re

d
ic

ti
o

n
 e

rr
o

r(
m

s)

λ=0
λ=5
λ=50
λ=100
λ=500

(c) P2psim: MAEE

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Relative error

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

λ=0
λ=5
λ=50
λ=100
λ=500

(d) Meridian: REE

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Iteration

S
tr

es
s

λ=0
λ=5
λ=50
λ=100
λ=500

(e) Meridian: Stress

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Iteration

M
ed

ia
n

 p
re

d
ic

ti
o

n
 e

rr
o

r(
m

s)

λ=0
λ=5
λ=50
λ=100
λ=500

(f) Meridian: MAEE

Figure 3.3: The effect of regularization coefficient (λ) on the performance of
DMF. (l = 10, k = 32)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Relative error

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

1
2
3
4
5

(a) P2psim: REE

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Iteration

S
tr

es
s

1
2
3
4
5

(b) P2psim: Stress

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Iteration

M
ed

ia
n

 p
re

d
ic

ti
o

n
 e

rr
o

r(
m

s)

1
2
3
4
5

(c) P2psim: MAEE

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Relative error

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

1
2
3
4
5

(d) Meridian: REE

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Iteration

S
tr

es
s

1
2
3
4
5

(e) Meridian: Stress

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Iteration

M
ed

ia
n

 p
re

d
ic

ti
o

n
 e

rr
o

r(
m

s)

1
2
3
4
5

(f) Meridian: MAEE

Figure 3.4: Results of different simulations. The simulations differ in the
initializations of the coordinates, in the selections of the neighbors by each
node and in the orders in which the nodes are updated. It can be seen that
the results are insensitive to these differences.

and as the same number is used in IDES. On the other hand, k has a clear
impact, as a larger k gives better accuracy, which is obvious because a larger
k means fewer missing elements thus better estimation of the coordinates.
However, a larger k also means more probe traffic and a higher overhead.
Following Vivaldi, we suggest k = 32 as a good tradeoff between accuracy
and measurement overhead. For λ, too little or too much regularization only
decreases the accuracy of DMF, and 50 seems to be a good choice for both
P2psim and Meridian datasets.

Note that the results are very stable from one simulation to another, as
highlighted in Figure 3.4. The algorithm does not seem very sensitive to
the random initialization of the coordinates and to the particular selection
of neighbours. In the following, unless otherwise stated, l = 10, k = 32 and
λ = 50 are used by default and the results of all the experiments are derived
from one simulation.

3.1.4.2 Analysis of Convergence and Stability

We further evaluate the convergence and the stability of DMF. From Fig-
ures 3.1, 3.2, 3.3 and 3.4, it is clear that DMF converges fast, empirically in
less than 20 iterations for both P2psim and Meridian datasets.

To further verify the stability of DMF, we performed a 2D factorization

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 21

(l = 2) and plotted the X and Y coordinates at different times of the simula-
tion, shown in Figure 3.5. It can be seen that the coordinates are very stable
with little drift after the embedding errors become stable. Figure 3.6 shows
the histogram of the differences between the predicted distance matrix at
the 20th and the 100th iterations.

3.1.4.3 Comparisons with Vivaldi and IDES

Lastly, we compare DMF with Vivaldi and IDES, as shown in Figure 3.7.
Vivaldi is a decentralized NCS algorithm based on Euclidian embedding.
Similar to DMF, each node updates its coordinates with respect to k ran-
domly selected neighbors. Here, we took k = 32 following the recommenda-
tion in Vivaldi. For IDES, a number of landmarks are needed. Although [21,
15] claimed that 20 randomly selected landmarks are sufficient to achieve
desirable accuracy, we nevertheless deployed 32 landmarks in our experi-
ments for the purpose of comparison. The dimensions of the embedding
space are 10 for all algorithms.

From Figure 3.7, it can be seen that both DMF and Vivaldi achieve simi-
lar accuracy and slightly outperform IDES. The worse performance by IDES
is likely due to the use of the landmarks. Since in IDES, a non-landmark
node only communicates with landmarks, no links between non-landmark
nodes are used by the NCS. In contrast, DMF and Vivaldi are completely
decentralized with links between nodes randomly selected and evenly dis-
tributed in the whole network.

3.1.5 Conclusions and Future Works

In this paper, we proposed a novel approach, called DMF, to predict-
ing unknown network distances. Essentially, we consider it as a learning
problem where coordinates of network nodes are learned from partially ob-
served measurements and the unknown distances are approximated from
the learned coordinates. Different from all previous works, the learning of
the coordinates is done by DMF which requires no landmarks. Since DMF
is not based on metric space embedding, it has the potential to overcome
common limitations such as the inability to represent TIVs and asymmetric
distances. Experimental results show that the performance of our approach
is comparable with two popular NCS algorithms: Vivaldi and IDES.

Finally it has to be noted that both P2psim and Meridian datasets are
symmetric with dij = dji. We are currently testing DMF on more datasets,
especially those with heavily asymmetric distances.

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) P2psim: Initialization

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Meridian: Initialization

−100 0 100 200
−100

−50

0

50

100

150

−100 0 100 200
−50

0

50

100

150

200

(c) P2psim: 1st iteration

−50 0 50 100
−20

−10

0

10

20

30

40

50

60

−100 −50 0 50 100
−50

0

50

100

(d) Meridian: 1st iteration

0 20 40 60
−30

−20

−10

0

10

20

30

0 10 20 30 40
−35

−30

−25

−20

−15

−10

−5

0

5

(e) P2psim: 20th iteration

−50 0 50 100
−20

−10

0

10

20

30

40

50

60

−20 0 20 40 60
−30

−20

−10

0

10

20

30

40

50

60

70

(f) Meridian: 20th iteration

0 10 20 30 40
−40

−30

−20

−10

0

10

20

0 20 40 60
−30

−25

−20

−15

−10

−5

0

5

10

(g) P2psim: 100th iteration

−50 0 50 100
−20

−10

0

10

20

30

40

50

−50 0 50
−40

−20

0

20

40

60

80

(h) Meridian: 100th iteration

Figure 3.5: The evolution of the coordinates, X(left subplot) and Y (right
subplot).FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 23

−60 −40 −20 0 20 40 60
0

0.02

0.04

0.06

0.08

0.1

Difference (ms)

D
is

tr
ib

u
ti

o
n

(a) P2psim: difference

−60 −40 −20 0 20 40 60
0

0.02

0.04

0.06

0.08

0.1

Difference (ms)

D
is

tr
ib

u
ti

o
n

(b) Meridian: difference

Figure 3.6: The differences between the predicted distance matrix at the
20th and the 100th iterations.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Relative error

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

IDES
Vivaldi
DMF

(a) P2psim: REE

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Iteration

S
tr

es
s

IDES
Vivaldi
DMF

(b) P2psim: Stress

0 20 40 60 80 100
0

10

20

30

40

50

60

Iteration

M
ed

ia
n

 p
re

d
ic

ti
o

n
 e

rr
o

r(
m

s)

IDES
Vivaldi
DMF

(c) P2psim: MAEE

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Relative error

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

IDES
Vivaldi
DMF

(d) Meridian: REE

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Iteration

S
tr

es
s

IDES
Vivaldi
DMF

(e) Meridian: Stress

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

Iteration

M
ed

ia
n

 p
re

d
ic

ti
o

n
 e

rr
o

r(
m

s)

IDES
Vivaldi
DMF

(f) Meridian: MAEE

Figure 3.7: Comparison with IDES and Vivaldi. (l = 10, k = 32, λ = 50 for
DMF)

3.2 Finding routing shortcuts

The knowledge of estimated delays between nodes can also be useful to
select better paths for real-time applications. In the previous deliverable,
we have proposed some methods that rely on the nodes running an ICS
to detect routing shortcuts in networks. In this section we evaluate more
precisely the quality of the results provided by these methods.

3.2.1 Problem Formalization

When an edge AB is a TIV-edge, this means that there exists a routing
shortcut ACB via some node C in terms of delay. The second subproblem
we address then consists in finding candidate C nodes that are likely to be
interesting routing shortcuts.

Using only the estimated delays provided by an ICS to find the shortcuts
in a network is useless. Indeed, the principle of an ICS is to give to each
node of the network a coordinate in a metric space such that the distance in
the metric space between the coordinates of two nodes gives an estimation
of the delay between these nodes. Since the triangle inequality must hold in
a metric space, it is impossible to find three nodes such that

EST (A,B) > EST (A,C) + EST (C,B)

where EST (X, Y) is the estimated RTT between the nodes X and Y . So, we
must combine estimations with measurements in order to obtain a shortcuts
detection criterion. In addition to the estimated RTT of each path in the
network, we consider that we can obtain the following measurement results.
First, if we look for a shortcut for the path AB, we assume that RTT (A,B)
can be measured. Secondly, we assume that we can obtain the Vivaldi’s
measurement results done between the nodes and their neighbors in order
to compute the coordinates.

Given these data we want to find criteria that provide a set of C nodes
that are probably shortcuts for that path. As such criteria can provide a
large set of nodes, we need also a way to rank the C nodes in order to find
the best shortcuts as fast as possible.

3.2.2 Implementation

Without loss of generality we consider a classical ICS algorithm, Vi-
valdi [10], and we have developed two basic shortcut detection criteria.

Our first criterion is called EDC (Estimation Detection Criterion). To
decide if a node C is a shortcut for a path AB, this criterion compares the

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 25

mesured RTT of the direct path between A and B and the estimated RTT of
the alternative path using C as relay. Formaly, a node C is considered as a
shortcut for the path AB if

RTT (A,B) > EST (A,C) + EST (C,B)

The second criterion is called ADC (Approximation Detection Criterion)
and uses only the order between the estimated RTTs. For a path AB and a
node C, we define CA (resp. CB) as the A’s (resp. B’s) Vivaldi neighbor that
is the nearest to C according to the estimated RTTs. Since A and CA (resp.
B and CB) are neighbors, we assume that RTT (A,CA) (resp. RTT (B,CB))
is known and can be used by the criterion to approximate the RTT of the
alternative path: a node C is considered as a shortcut for the path AB if,

RTT (A,B) > RTT (A,CA) +RTT (CB, B)

The problem with such criteria is that they do not provide a set of nodes
containing only the best shortcuts: they provide a possibly large set of nodes
containing nodes that are important shortcuts, node that are less important
shortcuts and even nodes that are not shortcuts (detection errors). So, we
need a way to rank the C nodes of a set in order to find quickly and easily the
best shortcuts in that set. Since we want to find the node C providing the
smallest RTT for a path between A and B, we will rank the C nodes by order
of provided gain. For a path AB, the absolute gain (Ga) and the relative gain
(Gr) provided by a node C are

Ga = RTT (A,B)− (RTT (A,C) +RTT (C,B)) Gr = Ga

RTT (A,B)

If C is a shortcut for the path AB, then Ga and Gr will have positive values
and the most interesting shortcut is the one that provides the biggest value
for these parameters. However, we cannot compute the values Ga and Gr for
any node C in a set provided by one of our criteria. Indeed, generally, we do
not know the real RTT of the alternative path that uses node C : we only
have Vivaldi’s estimations for that path. As we have used an estimation /
approximation for the RTT of the alternative path in the shortcut detection
criteria, we will also use that estimation / approximation in the ranking cri-
teria. The values used to rank the C nodes of a set will be denoted estimated
absolute gain (EGa) and estimated relative gain (EGr). The definitions of
these values depend of the shortcuts detection criterion used to obtain the
set of C nodes. For EDC, the definitions are

EGa = RTT (A,B)− (EST (A,C) + EST (C,B)) EGr = EGa

RTT (A,B)

and, for ADC, the definitions are

EGa = RTT (A,B)− (RTT (A,CA) +RTT (CB, B)) EGr = EGa

RTT (A,B)

For a path AB, we will rank the nodes C of the set provided by a shortcuts
detection criterion by decreasing order of estimated gain. If the nodes for
which the estimated gains are the biggest are the ones for which the (real)
gains are the biggest then we will find the nodes providing the most inter-
esting shortcuts in the top of the ranking.

3.2.3 Experimentation and evaluation

3.2.3.1 Performance of our routing shortcut detection criteria

In the previous deliverable, to evaluate the performance of our routing
shortcut criteria, we used the classical true positive rate and false positive
rate indicators. For a path AB, a good shortcut detection criterion must
detect a node C as a shortcut if it is a shortcut for the path AB (i.e. if it is a
positive) and must reject a node C if it is not a shortcut for the pathAB (i.e. if
it is a negative). The percentage of positives detected as shortcuts is the true
positive rate (TPR) and the percentage of negatives detected as shortcuts
is the false positive rate (FPR). A good detection criterion must provide a
high true positive rate and a low false positive rate. Since a shortcut is
not necessary useful2, we defined an interesting shortcut as a shortcut that
provides at least an absolute gain of 10ms and a relative gain of 10%. We
also defined the interesting true positive rate (ITPR) as the percentage of
interesting shortcuts detected as shortcuts by the criterion.

To test our criteria, we used three delay matrices obtained by doing
measurements in real networks. These three matrices are named P2PSim,
Meridian and Planetlab and give respectively delay measurements results
between 1740, 2500 and 180 nodes. In these matrices, the percentage of
paths for which there exists at least a shortcut is respectively 86%, 97% and
67% and the percentage of paths for which there exists at least an inter-
esting shortcut is respectively 43%, 83% and 16%. So, searching shortcuts
in the networks modelled by these matrices can provide an improvement in
term of delays for lots of paths.

We have simulated the behaviour of Vivaldi on these three networks by
using the P2PSim3 discrete-event simulator. Each node has computed its
coordinates in a 10 dimensional Euclidean space by doing measurements
with 32 neighbors. Then, we simply applied our detection criteria using the
estimated delay matrices computed with the coordinates obtained at the end
of the simulations of Vivaldi.

2For example, for a path AB such that RTT (A,B) = 100ms, a node C such that
RTT (A,C) + RTT (C,B) = 99ms is a shortcut that provides an absolute gain of 1ms and
a relative gain of 1%. Since using C as relay for sending data from A to B will add an
additional forwarding delay, detecting such shortcuts is useless.

3http://www.pdos.lcs.mit.edu/p2psim/index.html

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 27

http://www.pdos.lcs.mit.edu/p2psim/index.html

P2PSim Meridian Planetlab
All Int. All Int. All Int.

EDC 21% 36% 35% 41% 19% 49%
ADC 54% 68% 78% 80% 52% 70%

Table 3.1: EDC and ADC best shortcuts detection results

By analysing the obtained results we saw that the percentage of inter-
esting shortcuts detected as shortcuts (ITPR) was good in most of the cases
for both criteria. Furthermore, the percentage of non-shortcuts detected as
shortcuts was generally quite low. We concluded that the EDC criterion was
better than ADC : ADC was always able to detect a little bit more shortcuts
than EDC but it also gave more false positives.

3.2.3.2 Detection of the best shortcuts

Being able to detect a large part of the shortcuts existing in a network is
one thing, but what matters most is to detect the most interesting shortcuts
(those that provide the most important gain). Considering only the paths
for which there exists at least a shortcut (resp. an interesting shortcut), the
percentages of paths for which the most interesting shortcut is detected by
the criteria are given in table 3.1 in the columns named "All" (resp. in the
columns named "Int.").

As regards the detection of the best shortcuts, we see in table 3.1 that
the results obtained with the criterion ADC are better than those obtain
with EDC. Considering only the paths for which there exists at least an
interesting shortcut, the EDC criterion is able to find the best shortcut for
40% of the paths (on average) while the ADC criterion is able to find the
best shortcut for more than 70% of the paths in each matrix. Regarding
those results ADC seems to be a better criterion than EDC.

However, we must perhaps moderate our conclusion. Firstly because
ADC returns large sets of C nodes compared to EDC (including a non-negligible
number of false positives): at the limit, a criterion that detect as shortcut
each C node will detect the best shortcut for each path but is completely use-
less. So, if we choose to use ADC4, we absolutely need a criterion to rank the
C nodes of a returned set in order to keep only a subset of the nodes. More-
over, EDC can give better results than we think. Indeed, even if a criterion
cannot find the best shortcut for a path, it may be able to find another short-
cut that provides almost the same gain. We will analyse that in the next
section: for each path, we will compute the difference between the Gr pro-
vided by the best existing shortcut and the Gr provided by the best detected

4Such criterion can also be useful for EDC because, even if the sets of C nodes are gen-
erally smaller than those returned by ADC, they can contain tens or hundreds of nodes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Difference

all nodes/ADC
all nodes/EDC

100 nodes/ADC
50 nodes/ADC
20 nodes/ADC
20 nodes/EDC
10 nodes/ADC
10 nodes/EDC

no detection

(a) P2PSim

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
Difference

all nodes/ADC
all nodes/EDC

100 nodes/ADC
100 nodes/EDC
50 nodes/ADC
50 nodes/EDC
20 nodes/ADC
20 nodes/EDC
10 nodes/ADC
10 nodes/EDC

no detection

(b) Meridian

Figure 3.8: Difference of Gr between the best shortcut and the best shortcut
detected

shortcut.

3.2.3.3 Ranking of the detected nodes

Considering the results of the previous section, ADC seems to be bet-
ter than EDC. However, we have seen that ADC returns a set of C nodes
containing a non negligible number of false positives and, more generally, a
large number of nodes. Thus, having a criterion to rank the C nodes of a set
is important.

For a given matrix and a given detection criterion, we proposed in section
3.2.2 to rank the C nodes of each path on basis of the EGr they provide. We
will now evaluate if this gives a ranking with the C nodes providing the best
Gr in the first positions. To do this evaluation, for each path for which there
exists at least an interesting shortcut, we will only consider that the first
k C nodes of the ranking are detected by the criterion (for several values
of the parameter k). For these subsets of the C nodes we will compute the
difference between the Gr provided by the best existing shortcut and the Gr

provided by the best shortcut in the subset. We will thus obtain one value
(the result of the difference) for each path of the considered matrix. Then, we
will build the CDF of these values obtained for all the paths of the matrix.
These CDF (for different values of the parameter k) are given on figure 3.8.

The graphs named "no detection" on figures 3.8(a) and 3.8(b) give the
CDF of the Gr provided by the best existing shortcut for each path of the
matrix (for which there exists at least an interesting shortcut). Indeed, if
there is no detection criterion applied, there is no shortcut detected and the

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 29

difference between the Gr provided by the best existing shortcut and the Gr

provided by the best detected shortcut is the Gr provided by the best existing
shortcut. By applying a shortcut detection criterion, we will be able to detect
some shortcuts and, thus, to reduce that difference for some paths. Since the
computed difference is smaller for more paths, the CDF will rise faster on
the graphs.

The graphs named "all nodes/XDC" on the subfigures of figure 3.8 give
the CDF computed by considering all the nodes selected by the shortcut
detection criterion XDC (i.e., ADC or EDC). This is equivalent to using k =
∞. These are the best results that the given detection criteria applied on the
given matrix can provide. We can see that ADC still gives better results than
EDC considering the difference between the Gr provided by the best existing
shortcut and the Gr provided by the best detected shortcut: with ADC, the
difference is small for most of the paths (there are only a small part of the
paths for which the difference is bigger than 0.25) while this difference is
generally bigger with EDC.

These very good results with ADC are obtained by considering all the
nodes detected by the shortcut detection criterion. Let us see what is the
situation if we keep only the first nodes of the rankings. The graphs named
"k nodes/XDC" on the subfigures of figure 3.8 give the CDF computed by con-
sidering only the first k nodes of the rankings obtained by using the shortcut
detection criterion XDC (ADC or EDC) as detected. The first thing we see is
that even if we take only a few nodes in the ranking (i.e. 10 nodes), we ob-
tain already good improvement compared to the situation whithout shortcut
detection. We see also that ADC gives better results than EDC only if we
keep a sufficient number of nodes: more than 50 nodes for Meridian, more
than 20 nodes for P2PSim and more than 5 nodes for Planetlab6. Moreover,
if we keep a sufficient number of nodes (100 nodes for Meridian, 20 nodes
for P2PSim and 10 nodes for Planetlab), we obtain a result with ADC that is
better than what we can obtain by considering all the nodes with EDC. The
number of nodes to keep in order to obtain good results may seem important
for Meridian but it represents only 4% of the total number of nodes.

Given those results we can say that, with ADC, considering only 5% of
the total number of nodes in each matrix (that represents 125 nodes for
Meridian, 87 nodes for P2PSim and 9 nodes for Planetlab), we are able to
provide a significant improvement of the RTT for lots of AB pairs.

5That means that, for a small part of the paths AB, it is still possible to find another
shortcut C ′ in order to improve of more than 20% of RTT (A,B) the gain provided by the
alternative path proposed by our shortcut detection criterion.

6Since there are only 180 nodes in the Planetlab matrix, the sets of C nodes returned by
the criteria are quite small and keeping all the detected nodes is not really a problem. So,
the quality of the ranking is less important for that matrix and we will not show the graphs
here.

3.2.4 Conclusion and Future Work

We intend to test other criteria for finding routing shortcuts (for example,
a combination of ADC and EDC in order to exploit their advantages) and to
observe the impact of the different Vivaldi’s parameters and improvements
on the detection results. At the end of this phase of the work, we will have
chosen a criterion and an implementation of Vivaldi (improvements inte-
grated, values of the parameters, ...). For any path in the network, we will
be able to provide a list of nodes that are probably shortcuts for it and we
will be able to provide a ranking of these nodes.

The last step of the work will be to use the detection results in order to
improve the quality of the routing in the network.

3.3 Implementation of an Internet Coordinates
System within XORP

3.3.1 Introduction

We first explain how we implemented an ICS module in XORP. Then
we discuss some relevant aspects of the current implementation, some of
them being related to already known problems such as peer-to-peer network
bootstrapping, better choices of peers for ICS or measurement reliabilty. We
also analyze the memory and performance cost of our module. Finally we
explain how to improve and evolve this module for better integration and
tight interaction with ECODE architecture.

The implementation currently done within XORP is the implementation
of the Vivaldi algorithm[10]. By writing it, we aimed for two main goals:

• To actually write a first implementation of an Internet coordinate sys-
tem. Even if it will not be the coordinate system eventually used within
the ECODE projet, its implementation is a first but big step towards
the final implementation of an ICS within the ECODE architecture,
eventually embedding “our” coordinate system.

• To obtain programming skills with XORP and share this knowledge.
Besides the implementation, a wiki dedicated to the XORP program-
mers of the ECODE projet has been initiated. Furthermore, mail ex-
changes between partners is frequent and a mailing list will probably
be created for this purpose.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 31

3.3.2 General overview

3.3.2.1 Module place within XORP architecture

Fig. 3.9 comes from the XORP documentation and represents the high-
level architecture of XORP. In this diagram, each box stands for a XORP
module and therefore a particular process (sometimes two, due to the differ-
entiation of IPv4 and IPv6). Notice the three families of processes: unicast
routing, multicast routing and management.

PIM−SM

RIP

FEA

Forwarding Engine

IGMP/MLD

CLI SNMP
IPC
finder

OSPF

IS−IS

router
manager

BGP4+

RIB

Management Processes

Unicast Routing

Multicast Routing

RIB = routing information base
FEA = forwarding engine abstraction

Click Elements

Figure 3.9: Overview of the XORP module organization.

A module such as an ICS module does not really fit in the routing pro-
cesses (unicast or multicast) nor in the management processes. It is not sur-
prising since the ECODE project aims to add some kind of cognitive level to
a routing plateform such as XORP. So this module will be better suited in a
new family of, for example, cognitive processes. Incidentally, other modules
developed for the sake of ECODE will probably also fit in this class.

This module is currently mostly independent from other ones, having
relations for the time being with only the Forwarding Engine Abstraction7

(FEA) and some of the management processes, such as the Command Line
Interface (CLI) or the IPC Finder8.

7Which is somewhat similar to usual forwarding engine but permits to abstract the real
operating system or the distributed organization.

8Which permits to organize the Inter-Process Call (IPC) scheme of XORP.

3.3.2.2 Organization of the Vivaldi Module

We will refer to Fig. 3.10 to explain the organization of the Vivaldi Mod-
ule within XORP. While quite simplistic in regard to the class organization,
it should be sufficient to give a good grasp on this module operation.

In Fig. 3.10, boxes model the instantiated classes while the Vivaldi mod-
ule is running. The black arrows represent the method calls between these
objects, and the larger gray ones, the inter-process calls.

For the sake of simplicity, IPv4 and IPv6 are not distinguished, although
our Vivaldi processes would be different for these two flavours of IP. Anyway,
most of the code is commonly used by the Vivaldi module for IPv4 or IPv6,
thanks to the C++ templates.

XrlVivaldiTarget

VivaldiNode

XRL commands

(Inter-Process Calls)

PortManager

Port Port Port ...

PeerManager

Peer Peer Peer ...

Vivaldi Module

Outgoing XRLs

(Calls to the FEA)

Figure 3.10: Snapshot of objects of the Vivaldi module.

Descending through the diagram of Fig. 3.10, we can reach a fast and
intuitive comprehension of the overall working process of our module.

All commands and data9 addressed to our module use inter-process calls
9Ingoing data received from sockets bound to our module arrive through this interface,

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 33

(IPCs) addressed to methods defined within the XrlVivaldiTarget10. Among
other things, we can request to:

• start and stop the Vivaldi module,

• enable and disable operation of Vivaldi on particular network inter-
faces,

• ask for coordinates computed on relevant network interface.

The VivaldiNode is somehow the central class of our module. It holds
an instance of the PortManager class which, as the name suggests, is re-
sponsible for Vivaldi Ports.

A Vivaldi port – an instance of the Port class – is responsible for the
Vivaldi operation for a network interface on which Vivaldi is activated. By
Vivaldi operation, we essentially mean coordinate computation but it also
includes peer exchanges and measurement. So, there will be obviously one
instance of this class for each of the network interface where Vivaldi is ac-
tive.
Therefore, one router could obtain multiple coordinates. If one wishes in-
stead to work with a unique coordinate per router, it is better to enable
Vivaldi operation on the router address defined on its loopback interface (if
defined, it will be most of the time identical to the “router ID”11).

Each of the Port instance binds itself to a UDP socket on the relevant
network interface. This socket can then be used for sending probes, re-
sponses or other messages used by the Vivaldi module. All this (socket oper-
ations and traffic sending) is accomplished through XRL’s, i.e., inter-process
calls, to the Forwarding Engine Abstraction (FEA). The FEA is the module
responsible for these operations in XORP.

A Port instance holds a PeerManager which is responsible for the Peers
associated with this Vivaldi Port. A Peer object essentially keeps track of
address, coordinates and error of another node present in the network. We
also keep the count of outgoing messages sent to this peer to detect vanished
peer.

as it is usually the case with XORP modules.
10As the name suggests, XRL’s (for XORP Resources Locators) are the preferred –and

most recommended– means for inter-process communication.
11For more information on loopback interface and their interest, see for example [22].

3.3.3 Discussions

3.3.3.1 About message exchanges

For the sake of Vivaldi operation, we defined 6 types of messages. These
messages are encoded using a simple Type-Length-Value (TLV) format. In-
cidentally, multiple messages can and will be aggregated into a unique data-
gram addressed to a remote node. These 6 types are, grouped by relevant
pairs:

• ECHO and REPLY,

• ASK_CLOSE_PEERS and REPLY_CLOSE_PEERS,

• ASK_RANDOM_PEERS and REPLY_RANDOM_PEERS.

An ECHO message will simply be composed of a timestamp. When re-
ceived by the remote node, this one will include this timestamp within its
REPLY-type message together with its coordinates (and its estimated er-
ror). When the REPLY message arrives to the initial node, we can then
update the RTT and the coordinates associated with the remote node, and
process the Vivaldi algoritm to compute the new local coordinates and error.

The ASK_CLOSE_PEERS, resp. REPLY_CLOSE_PEERS, permits
to ask, resp. to provide, several of the closest peers. The couple formed by
ASK_RANDOM_PEERS and REPLY_RANDOM_PEERS acts similarly
with random peers from the pool (i.e., the set of peers that one actually
knows).

3.3.3.2 About bootstrapping

The bootstrapping problem arises in all Peer-to-Peer (P2P) networks and
Internet coordinates systems which adopted this scheme, such as Vivaldi,
are no exception. The simplest solution consists in using bootstrapping
nodes (or servers) which are statically defined. For boostrapping a Vivaldi
module, a command is provided to add the address of another Vivaldi node.

As it is the simplest solution, it is the most commonlt used too. However
it is not the more elegant. Indeed, while we deal with a P2P network where
peers dynamically go and leave, having to anchor some of the peers somehow
is against the underlying principle of such networks. A way to mitigate this
is to associate bootstrapping nodes with a domain name rather than a static
address. For the time being, this is not implemented in our Vivaldi module
but it could be if the need arises.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 35

3.3.3.3 About choosing the peers

From research on how to better choose peers for the Vivaldi Internet
coordinate system, it seems that better results are achieved if the pool of
peers is partly composed of peers in the close vicinity of the node and partly
of more distant random peers12. By default, a PeerManager instance keeps
64 peers, where half of them are kept in a “close peers” vector and the other
half is kept within a “distant random peers” vector.

For the time being, when a ECHO message is sent, we include in the
same datagram requests for at least one close peer and for another random
peer. Thus, replies to these requests are included within the datagram re-
ceived from the remote peer. By doing so, we will often receive information
about other peers present in the network coordinate system.

When a node receives information about a peer which is closer to itself
than other peers present in the “close peers” vector, it will replace the more
distant peer known in this vector by this new one. Doing so, we expect to
eventually obtain a vector filled with close peers, if not the closest ones.

If the newly-known peer is not eligible to enter within the “close peers”
but is precise enough, it rolls a dice to win an entry in the “distant random
peers”. The odds are small but if the peer is lucky, it replaces the less precise
peer13.

3.3.3.4 About measurement

As we can see from the organization of our ICS module, “echo” messages
are sent by Port instances and “reply” messages are received through the
XrlVivaldiTarget instance. So, measurement are made at the control plane
of the router. It could be fine if we were not working with XORP, i.e., an
asynchronous and distributed architecture. It is hard to say which delay
will be added before incoming datagram, and timestamp, will be processed;
or worse, which delay will be added if the cognitive module is on another
device than the one receiving the probe.

Ideally we want to measure RTTs from an network interface on a node
to another. Therefore we cannot let this be done by some high-level module
which may not even be on the destination machine for probes. We expect
to have access to low-level local Monitoring Points to further improve our
module organization and get rid of this drawback. More on this will be
discussed within the “Future work” section.

12See [23] for more on this subject.
13To augment differentiation between close and distant peers, we could also eliminate the

closest peer present within the vector. Or mix these approaches.

3.3.4 Evaluation

3.3.4.1 Memory cost

The memory cost of this module is quite small. In addition to a few pa-
rameters, data members and temporary values needed within classes, we
essentially keep coordinates and peer information. The module keeps these
data for each network interface on which Vivaldi is activated. By default, a
peer pool size is of 64 peers. If we add the local peer, we have a memory cost
of 65 N bytes for each Vivaldi port, where N is the weight of a Peer instance
and should be at most two or three dozens of bytes. For a reasonable amount
of Vivaldi ports – which is limited by the number of network interfaces – the
memory footprint is thus really not important.

For more complex coordinates, the memory used could be augmented by
some factor (probably one-digit). It should obviously not be a problem.

3.3.4.2 Performance

The burden put by this module on the platform essentially depends on
two factors. We can separate the load due to the requests initiated by the
local node and the load due to requests initiated by remote nodes.

Locally, the number of requests addressed to peers is dependent on the
relative error. Indeed, request interval is inversely proportional to the error,
with some arbitrary fixed lowest and highest values which are set, for the
time being, to 100ms and 10s.
We expect this error to be big during the first iterations of the algorithm
and to decrease to reach a small value during normal operation. Therefore,
numerous requests will be initiated at first and will be more spaced as the
coordinates permit better prediction of RTTs. The processing of a reply is
fast, with the update of remote coordinates and the processing of the Vivaldi
algorithm to update the local coordinates.

What is less predictable is the burden put on a node by its peers. Since
the “close peers” vector obviously aims to be filled with close peers, it is
likely that these peers will keep peering relationship with the local node
too. However, we have no idea of how many Vivaldi nodes will pick the local
one as peer. For the time being, we impose no limitation but in the future
we could include some to avoid overusing local resources.

3.3.5 Future work

We intend to improve and evolve our implementation in two steps.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 37

First, we want to split ICS operations from monitoring, i.e., active prob-
ing. The main practical reason is that monitoring will eventually be made
by Monitoring Points under the TCI responsibility. By separating these as-
pects, we will more easily adapt our module to the use of the TCI and inte-
grate the ECODE architecture. Notice that the adoption of the TCI which
would be responsible for low-level Monitoring Points present in forwarding
plane should solve our problem of reliable measurements.

Second, instead of placing lightweight ICS modules within each router
whose coordinates should be computed, we would like to host the ICS algo-
rithm computation remotely for a set of routers, e.g. for all edge routers in
an Autonomous System (AS). Doing so, this particular ICS server would be
in charge of the coordinates of these routers. This single ICS entity would
also be responsible for coordinate exchanges with similar entities from other
ASes. Incidentally, coordinates would no longer be known locally, within the
router they are associated with.

Several advantages of this approach would be scalability, minimal mod-
ification to core routers and easier access to coordinates. The ICS module
will be able to communicate with the TCIs located in several routers in its
domain and ask them to steer RTT measurements14 to other routers (inter-
nal or external to the domain) equipped with a similar TCI, and then collect
the measured delays. This architecture would not require to host an MLE
in the routers and modifications on core routers in particular should be min-
imal. Also, since coordinates would be centralized on a domain basis, it will
be easier to get and collect sets of coordinates.

14Therefore we expect these routers to have at least one delay monitoring engine and one
TCI; the latter being used to communicate with the remote ICS module.

Chapter 4

Minimizing packet loss during
re-routing

4.1 Introduction

The goal of this chapter is to improve the quality of the IP router recovery
process by proposing i) the formalization of the IP router update process in
relation to the network traffic dynamics it undergoes during the process,
and ii) the design and evaluation of heuristics to optimize the characterized
process in terms of packet loss decrease.

This chapter is organized as follows: Section 4.2 characterizes the prob-
lem and the opportunity of traffic-informed recovery and describes the ex-
isting research in that context. The next section formalizes the impact of
dynamic traffic conditions on the formalized router update process, and Sec-
tion 4.3.2 describes heuristics to improve the IP router recovery process.
In Section 4.4 network traffic dynamics is analyzed for short periods of time
and state-of-the-art network models are presented to order and predict these
dynamics. The defined paradigms are then combined in a realistic simula-
tion setting described in Section 4.5 where the performance of the defined
heuristics is evaluated making use of realistic network traffic models. At
last future work and a conclusion is given in Section 4.6

4.2 Problem statement

OSPF and IS-IS are Link State (LS) Interior Gateway Protocols (IGP)
commonly used in today’s IP networks. These protocols were designed in
times when computer communication networks were only used for research
purposes and best-effort service was sufficient. IGPs were designed to al-
low routers to automatically compute and configure routing and forwarding

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 39

Router F

200 Mb/s traffic flow 1

120 Mb/s traffic flow 2

50 Mb/s traffic flow 3

failure

Router B

Router E Router D

Router CRouter A

Figure 4.1: IP backbone router about to update entries for three traffic flows

tables without consuming too much CPU time during network instabilities.
Whereas LS convergence times in the early times could take tens of sec-
onds, nowadays, sub-3-second and sub-second convergence times are usual
in large IP backbone networks ([24]).

Whereas research and development efforts have been undertaken to fur-
ther reduce the reconvergence time, few studies take into account the spe-
cific characteristics of the network traffic that is received and forwarded in
order to improve the recovery process. Figure 4.1 illustrates the heavily sim-
plified situation of IP backbone router F needing to forward 3 traffic flows
from Router A towards Router C (from where the traffic flows will split to-
wards their exact destinations). Whereas the shortest forwarding path for
all these traffic flows is via Router B, a failure has occurred breaking con-
nectivity between the backbone router and Router B. As will be handled in
more detail in the coming sections, the default IP re-rerouting process ran-
domly updates the routing entries corresponding to the three traffic flows
(e.g. updating the flows in order (2,3,1)). However packet loss occurs as
long as the entries are not updated (traffic gets black holed). This means
that in case the routing entry corresponding to the traffic flow of 200 Mb/s
is only updated as last flow after one second, that 200 Mb has been lost for
this traffic flow during the recovery period, while clearly it would have been
better if the update order would have been (1,2,3).

While in this example only 3 routing table entries need to be updated,
it is clear that in a realistic scenario of an IP backbone with 10 Gb links
where routers need to update 5000 entries upon failure detection, packet
loss minimization can make a big difference. However, a few aspects make
the problem more challenging than is represented above: i) can the low-
level system design of the router help in minimizing the resulting packet
loss, ii) network traffic flows evolve dynamically over time, such that the
router needs to have an up-to-date view on the bitrate of monitored network
traffic flows, iii) for the same reason, the relative bitrate ratio’s of these
flows change over time, even during the recovery process network traffic
can change.

4.3 Formalization of the RUP under changing
traffic conditions

The RUP optimization heuristics described in D34, assumed that the net-
work traffic bitrate remains constant during the IP router update process.
While this is a convenient assumption for experimentation, it is more realis-
tic to model the process under dynamic traffic conditions, meaning that the
bitrate of a flow can change over time during the RUP. Therefore, the asso-
ciated traffic flow rate is now referred by br(fi, t) : Fn× T → R of the affected
flows in byte.

4.3.1 Packet loss

While the recovery time as formalized in D34 remains the same under
either static or dynamic traffic assumptions during the RUP, the formula
for packet loss slightly changes for a flow fi, having a continuous bitrate
described by a time series function br(fi, t), the loss is the following::

loss(fi) =
∫ r(fi)

0
br(fi, t)

Upon failure occurrence, as long as an affected traffic flow is not recov-
ered, packet loss occurs. The loss is proportional to the bitrate of the traffic
flow during the event of the update. Figure 4.2 shows the loss as experi-
enced by 2 concurrent flows during their recovery. For the entire entire set
of flows Fn, this results into a total loss of:

loss(Fn) =
n∑
i

∫ r(fi)

0
br(fi, t)

4.3.2 Heuristics for minimizing packet loss during the
RUP

Assuming that we know the time series br(fi, t) of all flows (using pre-
diction techniques), in this section we formulate heuristics or optimization
functions having as goal to minimize the packet loss during the routing up-
date process. Minimization of packet losses can be achieved by i) updating
the IGP prefixes associated to a (set of) flows in a different order, and/or
ii) bundling these prefixes in well-specified consecutive batches. As such,
an optimization function is defined as a function which maps a given traffic
model (set of well-defined br(fi, t)-functions) at a certain time t to a tuple
(flowordering, batching). The first part of the tuple denotes a permutation of

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 41

2 * tu 2 * tdts

Update batch Distribution batch

time

b
it
ra

te
f 2

f1

0

r(f1) = r(f2)

loss(f1)

loss(f2)

recovery time for both flows

Figure 4.2: Packet loss under dynamic traffic conditions

the flows, the second part refers to a decomposition of the flows into ordered
batches.

4.3.3 Fixed batch size

Given a fixed batch size n, techniques can be found to minimize the re-
sulting packet loss under these conditions. For this purpose, let’s define the
cumulative loss function per flow:

cumloss(fi, T) =
∫ T

0
br(fi, t)dt

The following algorithm can now be used for fixed batch size Y : Calculate
the total number of batches needed, and handle every consecutive batch
starting with the first, starting with a working set of all flows:

1. Calculate the recovery time RT for the current batch

2. For every un-updated flow fj, calculate CLj = cumloss(fj, RT)

3. Sort all CLj ’s

4. Select the Y flows with the highest CLj and finish the current batch
for the selected flows

5. Remove the already batched flows from the working set and continue
with the next batch

4.3.4 Variable batch size

It is clear that by using fixed batch sizes, the previous optimization al-
gorithm minimizes packet losses by means of flow ordering only. In other
terms, the algorithm relies on ordering the IGP prefix updates associated to
a (set of) flow(s).

The earliest recovery time possible for a flow fi (i referring to the queue-
position of the flow) at time t is defined as follows:

ERT (fi, t) = t+ i(tu + td) + ts

Building further on the heuristic from D34, we can formulate a heuristic
that takes into account both flow ordering and the batch size so as to mini-
mize the packet losses. For this purpose, consider the following scenario. We
can observe that in the middle of the ordered process of updating the IGP
prefixes associated to the affected flows Fn, with our current batch contain-
ing a set of flows to be updated bcurrent = (fi, . . . , fi+s)1, we have two options:

1. Extend the current batch with the next flow fi+s+1 (extension)

2. Finish the current batch and put the next flow into a new update-
distribution batch (splitting)

We can compare the additional cost of extension vs. the additional cost of
finishing the update-distribution batch to guide us into the decision above.
By defining tbcurrent as the starting time of the current batch bcurrent, the ex-
tension cost can be formulated as follows:

ec(bcurrent) =
i+s∑
j=i

∫ ERT (fi+k,tbcurrent)+(i+s−j+1)(tu+td)

ERT (fj ,tbcurrent)
br(fj, t)dt

This formula expresses the fact that, by extending the current batch, the
recovery time of every flow in the current batch will result into an additional
delay compared to the minimal delay it can experience (compared to the ear-
liest recovery time2), given the position of the flow. This additional delay,
when multiplied with the associated bandwidth, allows deducing the addi-
tional loss caused by the update-distribution batch extension. For example,
the recovery of the first flow fi in the given batch was already delayed with
s update-distribute batches (as it was not directly distributed but put in the
same batch of s next flows), and by adding an additional element (extending
the batch), this operation will delay it with an additional update-distribution

1Flows prior to fi have already been updated in an ordered manner (f1 to fn)
2The earliest recovery time for a flow is when it is the last flow in an update quantum

having no earlier update quantums.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 43

batch. On the contrary, the recovery of the last flow of the current batch will
only be delayed with one update-distribution batch in case of extending the
current batch.

Finishing the current batch on the other hand, has also an associated
cost, as it will introduce additional delay for the coming flows, resulting from
the additional swapping cost. This termination condition can be formulated
as follows:

finbcurrent =
∑

fj /∈bcurrent

∫ ERT (fj ,tbcurrent)+2ts.

ERT (fj ,tbcurrent)
br(fj, t)dt

Our configuration strategy now consists in identifying the action with
the least associated cost. The overall algorithm can now be expressed as
follows:

1. Add all flows to the working set

2. Sort all flows in the working set in decreasing order of their current
cumulative loss cumloss(fj, tcurrent)

3. Compute both extension and splitting cost

• If no current batch exists (first flow), then create a batch and add
the first flow into this newly created batch.

• Otherwise

– If the extension cost is smaller than the splitting cost, then
add the first flow in the sorted list to the current batch;

– Otherwise, create a new batch and add the first flow into this
newly created batch.

4. Remove the added flow from the working set

5. Repeat the procedure from step 2 until the working set is empty

4.4 Modeling traffic dynamics

An accurate network traffic model is expected to capture the prominent
traffic properties, e.g. short- and long- range dependence, self-similarity in
large-time scale and multi-fractality in short-time scale. On the other hand,
it has been observed that Internet traffic also exhibits non-stationary and
non-linear properties. Therefore, in order to benchmark the given RUP-
heuristics, one needs adequate traffic models fit and predict realistic IP
backbone network traffic. This section summarizes the state-of-the-art of

the network traffic models as will be used for experimental evaluation in
Section 4.5.

Network traffic analysis studies in the last decades have uncovered the
subtle pattern of self-similarity in network traffic time series. Stochastic
self-similarity describes a statistical property of the traffic and manifests
itself in several equivalent fashions: slowly decaying variance, long range
dependence (LRD), non-degenerate autocorrelations, and Hurst effect. In-
tuitively, a process is said to be self-similar if its statistical behavior is in-
dependent of time-scale. Formally, a time series Y = {Yt|t ∈ T} is self-
similar if its autocorrelation function decays only hyperbolically instead of
exponentially (see [25]). For self-similar processes, the autocorrelation func-
tion drops hyperbolically (not exponentially) toward zero but may never
reach zero (non-summable auto-correlation function). The ’degree’ of self-
similarity is often denoted by the Hurst parameter, which is a measure of
the persistence of a statistical phenomenon, denoting the length of the long-
range dependence of a stochastic process.

After the seminal work reported in [26] confirmed mathematically in
[25], it has been commonly accepted that Internet traffic behaves statisti-
cally self-similarly ([27, 28]) and that aggregating streams of such traffic
typically intensifies the self-similarity ("burstiness") instead of smoothing
it.

4.4.1 AutoRegressive Moving Average models

The root of most time series analysis and prediction models are based on
the AutoRegressive Moving Average (ARMA) model. TheARMA(p, q) model,
linearly models a time series as follows:

yt =
p∑
i=1

αiyt−i +
q∑
i=1

βwt−i + wt

This formula combines two techniques i) auto-regression (AR(p) model,
where p is the order of the autoregressive part of the model), which reflects
the fact that a prediction is based on the signal itself (using p previous val-
ues) reflected by the second term, and ii) moving averages (MA(q) model,
where q is the order of the moving average part of the model), reflected
by the white noise series wt (having E(wt) = 0 and var(Wt) = σ2) which
is put through a linear non-recursive filter determined by the coefficients
αi (weighted average). The auto-regressive part directly reflects the Short
Range Dependence (SRD) of a time series.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 45

4.4.2 (Fractionally) Integrated models

Because ARMA models time series as stationary (the variance of the
white noise process being constant over time), which is often not the case,
several improvements have been made to the base ARMA model.

Some non-stationary time series can be made stationary by one or more
levels of differencing3. Ones the resulting differenced time series is station-
ary, an ARMA-model can subsequently be fit and predictions can be made
by integrating the predictions back. The resulting model of this approach is
called the AutoRegressive Integrated Moving Average-model (ARIMA). The
resulting model including the lag operator L4 for ARIMA(p, d, q) is as follows.

(1−
p∑
i=1

αiL
i)(1− L)dyt = (1 +

q∑
i=1

βiL
i)wt

As shown in [26], Internet traffic exhibits a high degree of long-range
dependence (LRD) properties in addition to short-range dependence (SRD);
hence, the Fractional Auto Regressive Integrated Moving Average (FARIMA)
process has been proposed that can capture both SRD and LRD to model and
predict traffic. A FARIMA process describes both short- and long-range de-
pendence simultaneously by generalizing the ARIMA process: the fractional
parameter −1/2 < d < 1/2 determines the strength of the long-range behav-
ior (the Hurst parameter H = d + 0, 5) whereas parameters p, and q (and
the corresponding coefficients) allow for modeling of short-range properties
of the traffic. The fractional difference operator (1 − L)d is defined in terms
of the Binomial Theorem as the series:

(1− L)d =
∞∑
j=0

(
d

j

)
(−1)jLj = 1− dL+ d(d− 1)

2! L2 − d(d− 1)(d− 2)
3! L3 + . . .

If d = 0, the FARIMA(p, d, q) process coincides with the usual ARMA(p, q)
process, whereas if d has an integer value it reflects an ARIMA process. In
practice, the series5 denoted by the binomial expansion of (1−L)d is curtailed
at some suitably large L. This way, the FARIMA-model handles LRD using
a parsimonious model notation.

FARIMA models were successfully used in [29] to predict video, and In-
ternet traffic on a timescale of one second or larger. The self-similar charac-
ter of network traffic was shown to be adequately captured using a FARIMA

3A differenced time series yt generates a new time series of differences zt = yt − yt−1
4applying lag operator L on yt generates yt−1, and a power i of L defines a similar recur-

sive process of the order i
5The coefficients of the series can be written in terms of the Gamma-function:

(
d
j

)
(−1)j =

Γ(d+1)(−1)j
Γ(d−j+1)Γ(j+1) .

model. However, at smaller time scales, depending on the specific traffic
trace, it was shown that the signal-to-noise (SNR) was worse compared to
larger time scales.

4.5 Experimental validation

4.5.1 Platform choice

In order to motivate the choice of experimentation platform, we recapit-
ulate the phases of the packet minimization procedure for the router update
process:

1. Monitor traffic going through an IP router (per prefix of fixed length
aggregate all packet sizes within a predefined bin size)

2. Fit a network traffic model to the monitored traffic in order to make
predictions on future prefix bitrates

3. Apply optimization heuristics on the predicted network traffic models
in order to return a suggested prefix ranking and prefix batch compo-
sition

(a) The prefix ranking determines the order in which prefix updates
need to be processed

(b) The prefix batch composition determines which prefixes need to
be processed in a group

4. Executing the update of the affected prefixes according to the output of
the previous step. This is a two-phased process (see deliverable D34):

(a) Updating the RIB and FIB entries towards the central FIB (step
2 in Figure 1)

(b) Distributing the updated entries towards the LFIBS (step 3 in Fig-
ure 1)

Evaluating such a multi-phased process in an emulation platform gener-
ates the following challenges:

1. Fitting network traffic models in real time to monitored network traffic
data (phase b) is slow. This means that it takes up to 30 seconds per
prefix. Given a working set of 5000 prefixes, it is not obvious to execute
this in a feasible way on a standard Linux-based desktop machine, as
parallelized machinery is most probably needed for this.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 47

2. The value of optimization techniques in the use case becomes signifi-
cant when:

(a) Large throughputs (larger than 1 Gbps) and a high number of
prefixes are affected, which is the case in an IP backbone router

(b) Batch optimization techniques at the lowest processing level (milli-
and microsecond level) can be executed

3. Typical commodity hardware and OS’s such as Linux is not able to
cope with real-time process quantum configuration to optimize the up-
date/distribution process of prefixes as can be done on a real-time OS
on a high-end commercial backbone router (typical throughput levels
of the hard- and software is at most 1 Gbps).

4. The order in which prefixes can be updated is typically not a config-
urable parameter in XORP, and therefore this process should be re-
designed

5. Even if some optimization can be done using XORP-based emulation
platforms, the resulting gain will be minimal and not viewable in a
demo-setting

Given the above observations, the experimentation of the optimization of
the IP router update process is done in a custom simulation framework built
around modules in C++, Python and R and not in a XORP-based emulation
platform.

An interface was developed such that PCAP-trace files from the MAWI
project [30] could be read by the system used to evaluate the efficiency of
the modeled RUP with respect to a realistic network traffic setting. The
PCAP-traces were then processed by a set of time series modeling tools to
fit the traces to the state-of-the-art time series models as presented in Sec-
tion 4.4. RPY2 was selected as the interface between Python and R [31].
The R-packages fARma, forecast, fGarch, and fracdiff were used for fitting
the network traffic traces. All of the experiments ran on a regular desktop
computer equipped with an AMD Athlon 3000 CPU and 4Gb RAM.

The experimental validation consists of several parts i) collecting, ana-
lyzing, and preprocessing network traces to transform them into a set of
parallel time series (one per prefix), iii) modeling and fitting the resulting
time series into a network traffic model, and iv) using the resulting network
traffic model to minimize the packet loss during the RUP. The global process
is shown in Figure 4.3.

PCAP-trace

Compressed

intervaltable

(HDF file)

ARIMA fitting

preprocess+filter

FARIMA fitting

FARIMA fitARIMA fit

Random_fixed_

batch

Drcn_heuristic_so

rted

Sorted_fixed_b

atch

Rup_perf_heuri

stic1

Rup_perf_heuri

stic2

RUP optimization heuristics

Packet loss evaluation

Benchmark

Prefix

ordering

Prefix

batching

Python module

R functionality

data

process

Legend:

Figure 4.3: Global evaluation process

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 49

4.5.2 Network traffic analysis and preprocessing

A random subset of tracefiles of Samplepoint-F of the WIDE backbone
network (related to the MAWI-project) was analyzed. Samplepoint-F is a
monitoring point on a trans-Pacific line (150Mbps link) in operation since
2006/07/01. Tracefiles are analyzed and modeled at several aggregation lev-
els. The following aggregation levels were considered: spatial aggregation
using /8, /16 or /24 IPv4 subnet prefixes and temporal aggregation (binning)
using time intervals of 100 ms, 500 ms and 1000 ms. These 9 investigation
subsets are generated by a preprocessing module which groups all accumu-
lated packet sizes per subnet for each of the above time interval, generating
a 2-dimensional intervaltable. This preprocessing provides on average 140K
/24 subnets, 14K /16 subnets, and 0.21K /8 subnets for a 15 minute trace
containing on average 30M packets.

Before applying network traffic models to a given trace, it is important
to analyze the activity and persistence of prefixes at different aggregation
levels. This analysis indicates if a subnet prefix (either /8, /16 or /24) has
active packets being sent at some time interval and if this activity it still
persistent for the same subnet prefix during the next time interval. Figure
4.4 shows for every activity level and the persistence for 9 combined aggre-
gation levels. For all aggregation levels, both the activity and persistence
level are approximately constant over time. At coarser aggregation levels
(using for example /8 subnets), the persistence-level is close to the activity-
level. However, the persistence level at /16 or /24 is significantly lower (only
about 50 to 60 percent of the active flows stays active the next time inter-
val). This high churn rate gives an indication on the high variability of time
series corresponding to a subnet.

One of the main outcomes of the proposed RUP-optimization techniques
is about reordering the update of prefixes. The idea behind is that, if high
bitrate prefixes are updated earlier, then the resulting packet loss will de-
crease. In this context it is interesting to investigate the spread of bitrate
among several prefixes at several points in time at several aggregation lev-
els. This is shown in Figure 4.5 for 24-bit subnets. The figure makes clear
that although the majority of the prefixes is contained in a smallest bitrate
histogram part, that half of the bandwidth is taken by other prefixes. This
is the main motivation for optimizing the RUP.

4.5.3 Fitting traffic models

The experiments we performed restrict each investigation set to at most
5000 prefixes. Based on [24], this number of prefixes provides a realistic
assumption on the number of prefixes affected by a failure. Whereas exist-
ing network traffic studies mostly analyze and model global network traffic
aggregates at some point in time, resulting into one smoother time series to

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9001
Time (time bin number)

0.0

29.5

59.0

88.5

118.0

N
u
m

b
e
r

o
f

fl
o
w

s

Active flows per time bin

(a) /8 subnet-100 ms

0 180 360 540 720 900 1080 1260 1440 1620 1800
Time (time bin number)

0

34

68

102

136

N
u
m

b
e
r

o
f

fl
o
w

s

Active flows per time bin

(b) /8 subnet-500 ms

0 90 180 270 360 450 540 630 720 810 900
Time (time bin number)

0.0

34.5

69.0

103.5

138.0

N
u
m

b
e
r

o
f

fl
o
w

s

Active flows per time bin

(c) /8 subnet-1000 ms

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9001
Time (time bin number)

0.00

131.25

262.50

393.75

525.00

N
u
m

b
e
r

o
f

fl
o
w

s

Active flows per time bin

(d) /16 subnet-100 ms

0 180 360 540 720 900 1080 1260 1440 1620 1800
Time (time bin number)

0.0

268.5

537.0

805.5

1074.0

N
u
m

b
e
r

o
f

fl
o
w

s

Active flows per time bin

(e) /16 subnet-500 ms

0 90 180 270 360 450 540 630 720 810 900
Time (time bin number)

0.00

360.75

721.50

1082.25

1443.00

N
u
m

b
e
r

o
f

fl
o
w

s

Active flows per time bin

(f) /16 subnet-1000 ms

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9001
Time (time bin number)

0.0

172.5

345.0

517.5

690.0

N
u
m

b
e
r

o
f

fl
o
w

s

Active flows per time bin

(g) /24 subnet-100 ms

0 180 360 540 720 900 1080 1260 1440 1620 1800
Time (time bin number)

0

406

812

1218

1624

N
u
m

b
e
r

o
f

fl
o
w

s

Active flows per time bin

(h) /24 subnet-500 ms

0 90 180 270 360 450 540 630 720 810 900
Time (time bin number)

0.0

583.5

1167.0

1750.5

2334.0

N
u
m

b
e
r

o
f

fl
o
w

s

Active flows per time bin

(i) /24 subnet-1000 ms

Figure 4.4: Flow activity and persistence per aggregation level

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

20

40

60

80

100

120

140

Bitrate bins (bytes)

N
um

be
r

of
 fl

ow
s/

su
bn

et
s

in
 b

in

(a) Histogram of bitrate sizes of subnets

50%

10%

8%

3%

10%

6%

6%

7%

18079.60872
54236.47752
90393.34633
126550.2151
162707.0839
198863.9528
235020.8216
271177.6904

(b) Relative part of the bandwidth of dif-
ferent subnet bins

Figure 4.5: Composition of bandwidth into several aggregated traffic flows
(24-bit subnets)

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 51

be fit, our study tries to fit several (i.e., 5000) parallel time series at a time.
This approach asks for a unified and optimized fitting strategy.

The following models were evaluated for fitting traffic: ARIMA(p,d,q) and
FARIMA(p,d,q) models. Because our task consisted of fitting many paral-
lel time series, we did not manually inspect the Auto-Correlation Function
(ACF) and Partial ACF (PACF) of many of these series as it is usually the
case in time series modeling. For ARIMA(p,d,q)-model fitting, we relied on
the automated procedure as specified in [32] to find the optimal values for
p, d and q restricted to maximum values of 5. Once these values are de-
termined, the Maximum Likelihood Estimator (MLE) was used to find the
best coefficients corresponding to these models. For FARIMA(0,d,0)-model
fitting, we used the MLE as proposed in [33].

Table 4.5.3 summarizes the average fitting performance of the above
models to the subsets of time series of 5000 prefixes. To estimate their re-
spective performance, we use two metrics: normalized mean-square error
(NMSE), and the Pearson correlation (R), as defined by the following for-
mula’s.

NMSE =
∑
n(ŷ(x)− y(x))2∑
n(y(x)− µT)2

RX,Y = cov(X, Y)
var(X)var(Y)

The NMSE gives an indication of how much of the variance of a signal can
be accommodated by a model, the smaller the NMSE, the better the fit. The
correlation coefficient indicates the degree of linear relationship between
two variables. This is a variable between 0 and 1. Higher means more cor-
relation. From Table , it is clear that the FARIMA-models provide a better
fit to the network traffic than the ARIMA-models. This observation further
indicates, that even on the level of prefixes, a long-range dependence can be
observed in the network trace data. However, if we compare these numbers
to network traffic studies using the same methods on the global network
traffic bitrate, these numbers are considerably lower. This result is not sur-
prising, given the high churn rate of active prefixes as shown in Section
4.5.2. Figure 4.6 shows a traffic time series corresponding to /8 prefix and
its fit to an ARIMA(2,1,2)-model, compared to the fit to an FARIMA(0,d,0)-
model.

4.5.4 Packet-loss minimization

Given the best fitting traffic model and their expected predictive value
as detailed in Section 4.3.2, we quantified the gain one can achieve by using
the heuristics defined in Section 5. As described in the next subsections,

0 10 20 30 40 50 60 70 80 90 100
−500

0

500

1000

1500

2000

2500

3000

3500

Time

B
itr

at
e

original time series
arima(2,1,2)
farima(0,d,0)

Figure 4.6: Time series fitting of ARIMA vs. FARIMA using /8 subnet and
.1 s binsize

Table 4.1: Model fitting error
technique subnet binsize MNSE R

arima 8 0.1 2.84E-05 0.17
arima 8 0.5 2.64E-05 0.38
arima 8 1 2.49E-05 0.41
arima 16 0.1 1.01E-05 0.06
arima 16 0.5 8.89E-06 0.13
arima 16 1 7.98E-06 0.14
arima 24 0.1 4.82E-05 0.06
arima 24 0.5 4.51E-05 0.11
arima 24 1 4.24E-05 0.13

farima(0,0) 8 0.1 8.67E-07 0.97
farima(0,0) 8 0.5 6.25E-06 0.90
farima(0,0) 8 1 9.40E-06 0.84
farima(0,0) 16 0.1 1.27E-06 0.97
farima(0,0) 16 0.5 2.71E-06 0.91
farima(0,0) 16 1 3.04E-06 0.86
farima(0,0) 24 0.1 2.10E-05 0.92
farima(0,0) 24 0.5 2.62E-05 0.87
farima(0,0) 24 1 2.82E-05 0.82

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 53

several parameters (such as the batch size and swapping time) were evalu-
ated against their respective effect on the resulting packet loss in the given
dynamic traffic situation. Five routing update strategies have been evalu-
ated:

1. random_fixed_batch: the default RUP-algorithm that most IP routers
use today. It consists of using fixed batch sizes and randomly (with
respect to the order) updating the prefixes upon failure occurence.

2. sorted_fixed_batch: similar to random_fixed_batch, but the prefixes are
updated in decreasing order of bitrate as they were measured by the
router in the last time instance (this strategy assumes persistence in
bitrate and activity).

3. rup_perf_heuristic1: the strategy described in Section 4.3.3

4. drcn_heuristic_sorted: the strategy described in D34, this algorithm
also updates prefixes in decreasing order of bitrate as they were mea-
sured, and in addition tries to optimize the batching configuration by
trading off extension vs. splitting cost on persistent traffic assumptions

5. rup_perf_heuristic2: the strategy described in Section 4.3.4

These strategies were evaluated against several parameters of the mod-
eled update process. The followings aspects were parameterized in the pro-
cess: batch size of the RUP, bin size of the traffic aggregation, subnet of
traffic aggregation, used traffic model for prediction and process swapping
time (ts). In order to obtain representative results, each specific parameter
combination was repeated 100 times over different time slices of the traces
(simulating each failure in time).

4.5.4.1 Strategy vs. packet loss/recovery time

The major interest of this paper lies in the online minimization of packet
loss upon failure detection in an IP router by the use of optimization tech-
niques. As can be observed in Figure 4.7, conform earlier studies ([34]),
the default strategy of randomly updating prefixes using fixed batch sizes,
performs the worst of all strategies in all settings. More surprising is the or-
der and the ’spread’ of other RUP strategies. Real optimization techniques
quickly gain about 10 percent average decrease in packet loss compared to
the random strategy. However, whereas the gain from dynamic optimiza-
tion strategies such as rup_perf_heuristic1 en rup_perf_heuristic2 is clear,
it is smaller than one would expect. Most probably the reason for this
can be found in the highly variable character of short-term network traffic.
Another aspect that becomes clear from the figure, is that optimization in
terms of packet loss, does necessarily lead to smaller global recovery times.

-

0.20

0.40

0.60

0.80

1.00

1.20

1.40

9,000,000.00

9,200,000.00

9,400,000.00

9,600,000.00

9,800,000.00

10,000,000.00

10,200,000.00

10,400,000.00

10,600,000.00

10,800,000.00

rup_perf_heuristic2 rup_perf_heuristic1 sorted_fixed_batch drcn_heuristic_sorted random_fixed_batch

R
e

co
ve

ry
 t

im
e

 (
s)

P
ac

ke
t

lo
ss

 (
b

yt
e

s)

Strategy

Average of average packet loss

Average of recovery time

Figure 4.7: RUP strategy vs. loss

This must be understood from the fact that updating and distributing an
high bitrate prefix can result into additional waiting time (because of the
process swap) for other prefixes. If this process repeats itself, the global
recovery time can increase considerably, as can be seen for the strategies
rup_perf_heuristic2 and drcn_heuristic_sorted.

4.5.4.2 Batch size vs. packet loss/recovery time

The first three RUP-strategies assume fixed batch sizes in their process-
ing. Figure 4.8 evaluates the effect of using either large or small batch sizes
in these strategies. The figure indicates that, except for the random strat-
egy, no significant difference in packet loss or batch size is induced by the
batch size.

4.5.4.3 Traffic model vs. packet loss

In Section 4.5.3 the fitting performance of the FARIMA-models was bet-
ter compared to those of ARIMA-models, when applying them the set of con-
sidered MAWI-traces. Figure 4.9 shows that the first heuristic rup_perf_heuristic1
is considerably less sensitive to the fitting performance of the underlying
traffic model than the second rup_perf_heuristic2. This can be explained
from the fact that the second heuristic makes decisions about the batching
and prefix ordering strategy very often (per prefix) compared to the first
heuristic (per batch). For rup_perf_heuristic2, every bad prediction can re-
sult into a wrong batch split and extension, which cannot be undone any-

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 55

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

1000000

2000000

3000000

4000000

5000000

6000000

ra
n

d
o

m
_f

ix
ed

_b
at

ch

ru
p

_p
er

f_
h

eu
ri

st
ic

1

so
rt

ed
_f

ix
ed

_b
at

ch

ra
n

d
o

m
_f

ix
ed

_b
at

ch

ru
p

_p
er

f_
h

eu
ri

st
ic

1

so
rt

ed
_f

ix
ed

_b
at

ch

ra
n

d
o

m
_f

ix
ed

_b
at

ch

ru
p

_p
er

f_
h

eu
ri

st
ic

1

so
rt

ed
_f

ix
ed

_b
at

ch

ra
n

d
o

m
_f

ix
ed

_b
at

ch

ru
p

_p
er

f_
h

eu
ri

st
ic

1

so
rt

ed
_f

ix
ed

_b
at

ch

10 50 100 200

R
e

co
ve

ry
 t

im
e

 (
s)

P
ac

ke
t

lo
ss

 (
b

yt
e

s)

Batch size (number of prefixes in batch) + strategy

Average of packet loss

Average of recovery time

Figure 4.8: Batch size vs. packet loss

more. However, if predictions are fine, the packet loss performance is the
best that was obtained.

4.5.4.4 Swapping time vs. packet loss

From Figure 4.10 can be seen that increasing processing swapping times
do not have a severe impact on most RUP strategies. However a small
packet loss increasing trend can be observed in general for larger values for
ts. A similar trend can be observed for the corresponding recovery times.
Again the drcn_heuristic_sorted-strategy has the worst sensitivity to the
swapping times. This can be understood from the fact that wrong batch-split
or batch-extend decisions are penalized higher for larger swapping times.

4.6 Conclusion

The process of an IP router updating its routing entries when a failure
is detected taking into account the dynamic setting network traffic was for-
malized. State-of-the-art ARIMA- and FARIMA-models were studied and
applied to fit IP backbone network traces at very short-time scale at differ-
ent aggregation levels. By the design and evaluation of several heuristics,
we have shown that about 10 percent decrease in packet loss can be obtained
in realistic, dynamic contexts of the IP router update process.

The described process can be integrated in the ECODE architecture as

0

0.1

0.2

0.3

0.4

0.5

0.6

8600000

8800000

9000000

9200000

9400000

9600000

9800000

10000000

10200000

rup_perf_heuristic1 rup_perf_heuristic2 rup_perf_heuristic1 rup_perf_heuristic2

arima farima(0,d,0)

R
e

co
ve

ry
 t

im
e

 (
s)

P
ac

ke
t

lo
ss

 (
b

yt
e

s)

Prediction model + strategy

Average of average packet loss

Average of recovery time

Figure 4.9: Traffic model vs. packet loss

0

0.5

1

1.5

2

2.5

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

d
rc

n
_h

eu
ri

st
ic

_s
o

rt
ed

ra
n

d
o

m
_f

ix
ed

_b
at

ch

ru
p

_p
er

f_
h

eu
ri

st
ic

1

so
rt

ed
_f

ix
ed

_b
at

ch

d
rc

n
_h

eu
ri

st
ic

_s
o

rt
ed

ra
n

d
o

m
_f

ix
ed

_b
at

ch

ru
p

_p
er

f_
h

eu
ri

st
ic

1

so
rt

ed
_f

ix
ed

_b
at

ch

d
rc

n
_h

eu
ri

st
ic

_s
o

rt
ed

ra
n

d
o

m
_f

ix
ed

_b
at

ch

ru
p

_p
er

f_
h

eu
ri

st
ic

1

so
rt

ed
_f

ix
ed

_b
at

ch

d
rc

n
_h

eu
ri

st
ic

_s
o

rt
ed

ra
n

d
o

m
_f

ix
ed

_b
at

ch

ru
p

_p
er

f_
h

eu
ri

st
ic

1

so
rt

ed
_f

ix
ed

_b
at

ch

0.0001 0.001 0.005 0.01

R
e

co
ve

ry
 t

im
e

 (
s)

P
ac

ke
t

lo
ss

 (
b

yt
e

s)

Swapping time Ts (s)

Average of packet loss

Average of recovery time

Figure 4.10: Swapping time vs. packet loss

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 57

follows: the Monitoring Engine (ME) is responsible for keeping track of the
bitrates per prefix at a given bin size and subnet-length. This data is sent to
the Machine Learning Engine (MLE) in order to build traffic fitting models
(ie. ARIMA and FARIMA models) in background. When a failure occurs,
the Routing Engine (RE) forwards a optimization request to the MLE which
replies with the optimal prefix ordering and prefix batching to be executed
by the low level RE and FE.

The current study focused on the minimization of packet loss without
taking into account the computational cost of the underlying model. A future
study could consist of quantifying and optimizing the computational steps
needed in order to achieve the performance of the strategies presented in
this paper. Another topic for future study could be to improve the rup_perf_heuristic2
strategy, by i) improving its robustness to errors in the prediction model, or
ii) by evaluating other prediction models such as ARIMA-GARCH-models
([35]).

Chapter 5

Data Mining with OSPF updates
to identify shared risk link
group (SRLG)

5.1 Formalization of the technical problem

In the previous deliverable ECODE deliverable 3.3 we have introduced
a novel state space based machine learning technique to identify shared
resource link group (SRLG). In this deliverable we further extend and gen-
eralize that method and produce results using the developed algorithm that
proves the effectiveness of our proposed SRLG identification scheme. Before
describing the algorithm in formal details, we first provide an example net-
work that will help us to better understand the proposed algorithm. Fig. 5.1
shows a typical network topology with 6 nodes (routers) and 9 links. Fig. 5.2
shows a typical link state update sequence for the same network with links
D, B and H failing. With multiple link failures, the arrival time sequences
of the received LSUs are grouped together as depicted in Fig. 5.2. To iden-
tify SRLG, it is then required to find correlation pattern among LSU time
sequences. We start our algorithm with crudely grouping time sequences
and declaring them as SRLGs. For an example, links (D, B), (H, D, B), (H,
D) and (B) forms SRLGs from Fig. 5.2 at the beginning. We next form a
probabilistic model to represent SRLG in a more realistic fashion.

In the next three subsections, we describe the three phases of our pro-
posed SRLG detection and identification algorithm and illustrate it with
representative examples.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 59

Figure 5.1: Example network topology

Figure 5.2: Link state update sequence for different link failure

5.2 Learning phase

In the learning phase, we construct a new Bayesian network based state
space model. The state space model looks like one shown in Fig. 5.3. Each
node of the model represents a set of links that forms a particular SRLG.
The bottommost tier signifies isolated links forming their own SRLG. As
we move higher through the state space, the number of nodes per SRLG
increases. Each of the nodes is connected to one or more upper tier node.
These connections specify the transition possibilities which mean that an
observed SRLG in a particular state space node has certain finite probability
of having an additional link included in the same SRLG.

In Fig. 5.3, pB, pD, pH represents the probability of a link (B, D and
H respectively) being an isolated link forming their own SRLG. Whereas,
state (B, D) and state (D, H) represents two SRLGs with two member links
each. In that context, pBD and pDH represents the probability of (B, D) or
(D, H) forming SRLG without the possibility of including any further links
in their respective SRLGs. The transition probability from state B to state
(B, D), pB→BD, represents the probability of finding an SRLG with member
links B and D, when an isolated link failure B is initially observed. Each
of the transitions in the state space model is associated with a number that
indicates the frequency of the observed phenomenon during the learning
phase. The first part of the learning phase consists of grouping together
LSUs from the LSU time sequence. This can be performed in two different
ways:

Figure 5.3: State space model formulation example

1. We define a time threshold and the LSUs that are within the elapsed
time interval are grouped together. The time threshold is calculated as the
addition of the maximum synchronization mismatch between routers, max-
imum propagation delay and queuing delays. These delays may vary from
network to network and has to be manually entered while installing the
machine learning component.

2. We initially start with a time threshold which is referred as window
threshold. The start time can be any reasonable estimated guess (5 sec. for
our case), as it has very little impact on the adaptive algorithm. The window
threshold is then adaptively modified as follows. We define Tmin as the mini-
mum value of timing threshold. We start the algorithm with threshold time
(Tth) equals to Tmin. As a new LSA arrives the grouping algorithm starts and
set a timer to Tmin. There can be two possible cases:

a) No more LSA arrives within Tmin: The algorithm stops further group-
ing and keeps Tth = Tmin.

b) N number of LSA arrives within Tmin: The algorithm increases the
threshold time as follows: Tth = Tmin+f(N)∑N

j=2 Tinterarrival(j,j+1), where f(N)
denotes the function of N and denotes the inter arrival time between jth and
(j + 1)th arrival. Under condition (b) (i.e., when multiple arrivals of LSAs
are observed) once the new Tth has been calculated and when the algorithm
waits for the added threshold time for further LSA arrivals, there can be
two different scenarios:

I. No further LSA arrives as Tth elapses: If f(N)∑N
j=2 Tinterarrival(j,j+1) <

Tmin, then Tth is set to Tmin; otherwise and the algorithm stops grouping
LSAs. The current Tth is stored for the next phase of grouping.

II. N number of LSA arrives within the extended Tth: Tth is further ex-
tended following the process (b) described above (i.e., N number of LSA ar-
rives within Tmin) and the algorithm further waits for new LSA arrivals for
this extended period.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 61

Figure 5.4: Time sequence of LSA grouping algorithm

The algorithm continues till there are no new LSA arrivals within the
extended Tth. The step I in subsequent states provides a mean where the
algorithm adaptively reduces the Tth value when there are no arrivals within
an extended Tth period. Whereas step b and step II ensures the algorithm
can adaptively increases Tth if more number of arrivals is registered during
the extended Tth period. The algorithm is illustrated by an example in Fig.
5.4, where we have assumed that f(N) = 1 for all values of N .

After the LSU grouping is performed, the state space creation algorithm
takes over. In the state space creation algorithm, each of the states or nodes
maintains a number of relations with its upper tier. Each time a relation
is registered for a particular state, an identifier is assigned and we refer to
this identifier as relation Id. Relation Ids are created from the state space
name and are shorted appropriately to store so that the overall search time
to find the existence of a relation is minimized. Each of the transition to
its upper tier state is associated with four variables namely, (a) the transi-
tion identification, (b) the frequency of the observed phenomenon during the
learning phase, (c) the transition pass, that indicates the number of similar
probabilistic transition a node can have to its higher tier, and (d) the asso-
ciated probability for that particular transition. Every time a transition is
observed, the algorithm searches among the existing relation Ids assigned
to already registered relations for that particular state. If no match is found,
a new relation is created; otherwise, the frequency counter for that relation
is increased by one. The pass number indicates how deep the state is from
its starting state for a particular group. Suppose for instance that the group
(B, D, H) is detected from the LSU grouping. Initially, a state of (B, D, H)
is created. Then at the next lower tier, three groups of (B, D), (D, H), (B, H)
are created. Here, the pass number automatically becomes 1 for each of the
transition from these three groups to the higher state (B, D, H). However,
we can form a next tier of (B), (D) and (H) state, whose pass becomes 2 as
they are two layers deeper into the SRLG tree for current observation. The
important point is that for a particular relation a separate counter has to be
maintained for each pass value. This particular counter counts how many
times this relation has been observed. We can also observe that the value

Figure 5.5: State space model for the first group (D, B) of Fig. 5.2

of the transition pass corresponds to the total number of transition from the
concerned state to all possible next tier state.

The probability for a particular transition is defined by the following for-
mula, where pass(k) is the pass number associated with kth pass for a par-
ticular relation and ηpass(k) is the number of time the pass has been observed
by the learning phase. The value of k can take any values from 1 to n− 1.

Ptransition = ηpass(k)/pass(k)∑
ηpass(k)/pass(k) (5.1)

We provide the following example to illustrate the above algorithm. Here
we present the evolution of the state space model due to the arrival of the
first two groups as shown in Fig. 5.2.

1. State space formation due to the arrival of the failure notification for
the group (D, B) as shown in Fig. 5.5.

2. State space modification due to the arrival of the failure notification
for the group (H, D, B) as shown in Fig. 5.5.

Initially, as depicted in Fig. 5.5, the transition pass is 1 for both the tran-
sition and the self transition probability for state (B,D) is 1. However, the
self transition probability for states (B) and (D) remains zero. For the second
LSU group (H, D, B), the value of the self transition probability changes to
1. The pass number for transitions from second tier ((B, D), etc.) to upper
tier (B, D, H) is 1. However, a new transition with a new pass number 2
has to be created between first tier states ((B), (D), et.) and the second tier
states (B, D), etc.). Therefore, the associated probability values for each of
the transition are modified according to the equation (5.1). Note that, the
transitions are going only in the upward direction and the total sum of the
transition probabilities going out of a node always sum up to be 1, which
verifies the validity and correctness of the algorithm.

Now to provide a general description of the above described algorithm,

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 63

Figure 5.6: State space model for the second group (H, D, B) of Fig. 5.2

we suppose that there are n links denoted by l1, l2, ... , ln where l1, l2, l3,
... can represent link A, B, C, ... of our example scenario respectively. We
denote the SRLG set as Sp,q where p specifies the number of member link
within that SRLG and the q specifies the SRLG id for individual SRLGs
having p specified links chosen from the pool of n links as group member.
Any member of the Sp,q set can represent any state of pth tier in our state
diagram like (B, D) or (B, H) for our example state space model.

As there are a total of n links, therefore, the SRLG with the highest num-
ber of links that can be formed is denoted by Sn,1, where all the links are the
member of that SRLG and the number 1 specifies the uniqueness of that
particular SRLG. The next hierarchy of SRLG (in terms of number of links
as member) can be represented as Sn−1,q where q can vary from 1 to nCn−1,
i.e., the all possible number of combinations with which n − 1 links can be
chosen from n links. The further hierarchy and their properties are specified
in the table 5.1:

For our algorithm each of the Sn−r−1,q maintains one state variable and
a structure of relationships with the hierarchy member having hierarchy
number n − r. The structure provides the relationship of Sn−r−1,q with the
immediate hierarchy i.e., Sn−r,x′ and to itself. For each of the relationship
there can be multiple passes, depending upon the starting point of the SRLG
group (e.g., Sn−r,x′′) as shown in the examples (e.g., group (B, D, H) or group
(B,D)). This is denoted by pass(k) in our case. The number i specifies how
many tiers below the concerned state (e.g.,Sn−r−1,x) exist from the starting
SRLG (e.g., Sn−R,x′′) in the state space model. Therefore, i = (n − r − 1) −
(n − R) = R − r − 1 for a relationship between Sn−r−1,x and Sn−r,x′ where
the starting SRLG for this learning phase is Sn−R,x′′ . Each of the structure
under the same pass keeps a counter (ηpass(k)) that is incremented after every
occurrence of such relationship. Every relationship is also associated with a
transition probability value that is updated after every iteration of learning

Hierarchy
num-
ber

Symbol Possible
value of q

Member
links
per
SRLG

Subset Rela-
tionship

0 Sn,1 1 n
1 Sn−1,q 1, 2, ..., nCn−1 n− 1 Sn−1,q ∈ Sn,1
...
R Sn−R,x′′ 1, 2, ..., nCn−R n−R Sn−R,x′′ ∈

Sn−R,x̂′′ where
hatx

′′ can take
any of R+1CR
values for
which SRLG
Sn−R,x̂′′ con-
tains all the
members of the
group Sn−R,x′′

...
r Sn−r,x′ 1, 2, ..., nCn−r n− r Similar as Hi-

erarchy R
r + 1 Sn−r−1,x 1, 2, ...,

nCn−r−1

n−r−1 Similar as Hi-
erarchy R

...
n− 1 S1,q 1, 2, ..., nCn−1 1 Similar as Hi-

erarchy R

Table 5.1: SRLG state hierarchy and their specification

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 65

phase according to equation 5.1.

This concludes the learning phase of our algorithm. In the learning
phase, we create a state space representation of the SRLG map where the
transition probabilities of various state transitions provide a statistical esti-
mator of whether a group should be considered as SRLG or not. The learning
can be offline, fed with the previous log file stored regarding network fail-
ures. The machine learning model can be programmed to filter out data from
the log file to create LSU update sequence and hence, initial LSU groups
which the algorithm can take as input data. In addition, the learning phase
may continue functioning online while link failures occur. This dynamically
modifies the structure of the SRLG state space and the associated transi-
tion probability values. Irrespective of the mode the learning phase is ex-
ecuted, the algorithm for SRLG detection needs the next phase of deciding
and declaring SRLGs from the probability values provided by the learning
phase.

5.3 Decision making phase

In the decision making phase, we use the state space based model and
its transition probabilities to construct a basic control scheme regarding the
existence of SRLGs in the entire network. The decision making follows the
following recursion. Whenever a new LSU arrives mentioning a link failure,
it triggers the following probability computation: The algorithm checks how
far along the state space model can proceed. The algorithm detects all the
transition connectivity between the state representing the failed link and all
other states in the state space model. We need to keep in mind here that the
transitions are only possible from a lower tier state to a higher tier state.
The algorithm eventually calculates the overall probability of reaching all
the possible upper tier states that is connected to the concerned state with a
definite transition probability. All the probability values are then compared
to a pre-defined threshold. The highest tier state that has probability higher
than the threshold is then declared as the representative of SRLG. With our
example state space model in Fig. 5.6 (using formula 5.1):

p(BD|B) = p(B → BD)(for pass 1) +p(B → BD)(for pass 2)
= 1/2 + 1/4 = 0.75

p(BH|B) = 1/4 = 0.25

p(BDH|B) = p(B → BD)p(BD → BDH) + p(B → BH)p(BH → BDH)
= 0.75 ∗ 0.5 + 1/4 ∗ 1/2 = 0.5

Using this example, we can observe that if the threshold probability is
less than 0.75 and greater than 0.5 the SRLG include link B and D, whereas
if the threshold probability is below 0.5 it chooses B, D and H as the mem-

bers of SRLG. If more than one state in the same tier has equal probability
and are the highest state having probability above threshold, the algorithm
defers decision and waits for additional inputs. In a more general term
the transition probability calculation can be summarized through equation
. Here denotes the overall probability of having an SRLG represented by
Sn−R,x′′ given a link failure notification related to lα arrives where lα belongs
to Sn−R,x′′ set.

pr(Sn−R,x′′/lα) =
∑ n−R−2∏

j=1
pr
(
Sj,i → Sj+1,i′

)
(5.2)

where the summession terms run for
∏n−R−2
m=1

(
m+ 2
m

)
combination of

transition for different i, i′ where Sj,i ⊂ Sn−R,x′′ and Sj+1,i′ ⊂ Sn−R,x′′ for all
j < n−R. Here pr (Sj,i → Sj+1,i′) is calculated as follows:

pr (Sj,i → Sj+1,i′) =
∑
k

pr (Sj,i → Sj+1,i′|pass(k)) (5.3)

Equation 5.2 states that if we need to calculate the probability of one par-
ticular SRLG represented by Sn−R,x′′ from a particular link lα represented by
the state S1,α depends on all possible transition possible through the state
space model from S1,α to Sn−R,x′′ . The summation term in equation 5.3 con-
siders all possible ways to connect state S1,α to Sn−R,x′′ . It is a trivial exercise

to show that there exist
∏n−R−2
m=1

(
m+ 2
m

)
ways to connect (track down from)

state Sn−R,x′′ to state S1,α. It is evident that the selection of the decision
probability threshold is crucial for the overall performance of the proposed
algorithm. We propose to run the same algorithm offline on the log file of
LSU sequence of some known SRLG groups for varying values of probability
threshold to find out the optimized value of the probability threshold. This
concludes the description of the decision making phase. In the next subsec-
tion, we describe the use of the proposed SRLG identification mechanism to
reduce recovery time.

5.4 Protection time reduction phase

In this phase, we use the outcome of the SRLG identification phase to
reduce recovery time upon failure occurrence. As discussed earlier, identifi-
cation of SRLG may trigger simultaneous routing and forwarding table up-
dates for multiple links failure scenario with the arrival of single link failure
notification. Modification of routing and forwarding table might take several
milliseconds depending on the router entry. With any of the current link

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 67

Figure 5.7: Router architecture along with SRLG decision flow diagram

state protocol (such as OSPF), common link failure resulting from an "SRLG
failure" may trigger multiple LSDB update and subsequently RIB entries re-
computation, one to address each of the link failure. Failing to prune the set
of links involved by the SRLG failure at RIB entries re-computation leads to
higher magnitude of packet losses compared to the situation where the set
of links (associated to this SRLG failure) result in a single re-computation
step. It has to be noticed that, independently of the actual RIB entries re-
computation time, failing to take into account the set of links affected by the
SRLG failure leads to traffic losses until all failed links have been pruned
from the LSDB used as input for RIB entries re-computation.

We here outline the integration of the proposed technique into the ECODE
architecture that enhances alegacy router with a machine learning (ML)
component. As shown in Fig. 5.7, the ML component or engine interacts
with the existing routers engines. Such router comprises four basic modules:
the machine learning engine (MLE) and the monitoring engine (ME) in ad-
dition to the ordinary forwarding engine (FE) and routing engine (RE). The
monitoring engine is not involved in the present application and thus not
further considered in this study. The SRLG identification algorithm runs in
the MLE. The typical data flow diagram is shown in Fig. 5.7 with numbered
arrows.

The functionality of each of this data flows are described as follows:

1. MLE initiate request for link state updates from the RE.

2. RE starts sending update to MLE as they are available. RE continues
to do so as the algorithm runs.

3. MLE learns and detects SRLG with Bayesian Network based state
space model.

4. MLE sends SRLG prediction to RE.

5. RE re-calculates routing table for SRLG failure.

6. RE updates forwarding information base (FIB) entries for SRLG fail-
ure.

Therefore, the described architecture with the SRLG identification algo-
rithm present in the machine learning engine helps router to reduce protec-
tion switching time.

5.5 Result and Discussion

Our experimental setup is based on an example network with predefined
topology and SRLGs. We create an approximate analytical framework to
represent the time sequence of LSUs for such a network. We use Matlab to
generate these time sequences and then we run our algorithm on these time
sequences to validate our model. The XORP implementation of the above
mentioned machine learning algorithm will be dealt in the deliverables un-
der Work Package 4. This deliverable mainly provides the proof of concept
for the state space based Bayesian network model to be used for the use case
of SRLG identification.

In this section we first describe how we formulate our input LSU time
sequence for the experimentation of our algorithm.

To generate LSU time sequence used as input to our state space based
model. As obtaining failure data set is difficult (due to the fact that failures
are relatively sparse events), we created a model to generate input data set
that closely mimics the real scenario. For this purpose, we assume that
the link failure or any SRLG failure follows Weibull distribution [36]. The
Weibull distribution is known for long for its special property to represent
failure scenario [36]. The pdf of Weibull distribution is shown in equation
5.4:

f (x, λ, k) =

 (k/λ)
(
x
λ

)k−1
e−(xλ)k x ≥ 0

0 x < 0
(5.4)

Where, λ is the scale parameter and k is the shape parameter. When we
take k>1, the failure rate increases with time, which resemble the realistic
network scenario. For our purpose we take k =1.5 and λ a very higher value
to counter the fact that network failure events are rare in reality.

We have taken a network of 25 links among which links form multiple
SRLGs of different link numbers. For our purpose, we have taken one SRLG
each with 5 and 4 member links, two SRLGs with 3 and 2 member links
and rest forming no SRLGs. We distinguish two cases depending on the

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 69

dominant delay factor in the origination and propagation of LSUs after the
occurrence of correlated failure:

Case 1: Hello message and RouterDead detection Interval dominates.
Suppose that 2 distinct LSUs for 2 different links, associated to the same
SRLG, are issued by two different routers. The maximum delay they can
suffer at the origin is due to the desynchronized Hello message intervals. As
the Hello message intervals are in the order of seconds (typical values 1 to 10
sec.), at the higher inter arrival delay between two LSUs of the same SRLG
failure, the Hello interval de-synchronization dominates the propagation or
queuing delay. So for higher delay, we can assume a uniform distribution
for the LSU inter-arrival time as desynchonization of issuing Hello message
between two routers is completely random and independent

Case 2: Queuing, Transmission, and/or Propagation dominates. When
the desynchronization due to Hello message is negligible, propagation and
queuing delay dictates the cause for delay variance. Due to the accumu-
lation of multiple mutually independent random queuing delays, we can
assume without the loss of generality, that the interarrival time between
LSUs are memory less and demonstrate exponential distribution. We have
tested different fat tailed distribution that have power law decay to check
if any significant changes occur in the final results. However, different in-
terarrival time distribution shows minimal effect on the final result because
failures are rare events that are usually separated by a large amount of
time. Generally, inter-failure occurrence time is much larger than the inter
arrival time between two LSUs for same SRLG failure to create any impact
whatsoever.

With this specifically generated input data files, we run the LSU group-
ing algorithm as described in Section IIA. We use both grouping techniques
described in Section IIA. However, very little difference in terms of final out-
come was observed. Once the LSUs are grouped, we run the proposed state
space based learning as well as the decision making algorithm to predict
the existence of SRLG. We compare our results from the prior knowledge of
SRLGs from our assumed network map and compute the amount of false
positive and false negative the algorithm generates.

Fig. 5.8 provides the results for percentage of false positive and false
negative as the number of failures per SRLG increases. This percentage
value is the overall average among multiple random experiments performed
after a certain number of failure data from each SRLGs are used to learn
the state space. This experiment was carried over a set of disjoint SRLGs
where the members of each SRLG are not part of any other SRLGs.

We next follow the same experiment for SRLGs with common members.
Fig. 5.9 provides the results for multiple SRLGs having one common mem-
ber. For this example we have included a common member between SRLG
group having 5 and 4 members. Therefore, the previous SRLG with 4 mem-

Figure 5.8: Percentage of false positive and negative with number of failure
iteration (disjoint SRLGs)

Figure 5.9: Percentage of false positive and false negative with number of
failure iteration (SRLGs with one common node)

Figure 5.10: Percentage of false positive and false negative with number of
failure iteration (SRLGs with two common nodes)

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 71

bers has now 5 member links. We can easily see that the performance de-
grades due to the interconnection between SRLGs. It is observed that the
algorithm produces both false positive or false negative more often when
the SRLG failures with common member link are happening. However, the
percentage of false positive or negative decreases as the number of failure
per SRLG increases. This is because the algorithm gathers more statistical
input regarding different SRLG failures and hence learns to predict better.
We further increase the number of common members. We add one more
common link to the SRLG with 5 members so that the new SRLG with 6
and 5 links have two common member links. In Fig. 5.10 we observe further
degradation due to two common members between SRLGs.

Finally, we investigate the gain of our SRLG detection method in terms of
reducing the protection switching time and eventually reducing the amount
of packet loss during failure. We assume the router update process to follow
the quantum update procedure as described in [34] with update time = 100
µs, distribution time = 100 µs, swapping time = 1000 µs, prefixes per batch =
500 and total number of flows through the concerned router = 5000 having
flow rate varying from 1 Kbps to 100 Mbps. For our example network with 20
failure cycles the total amount of data loss in the concerned router becomes
16 GBytes without the SRLG detection procedure. Whereas, SRLG detection
and reduce it to 7.6 GBytes (>50 percent). This is significant for networks
where failures are more frequent like wireless sensor networks or networks
with old equipments.

Chapter 6

Profile-based accountability

In an attempt to achieve network fairness and avoid congestion, network
operators try to use forms of subscriber accountability. Subscriber account-
ability deals with holding subscribers accountable for the traffic (or more
specific: the network congestion) they introduce into the network. Although
it has been on requirement lists of next generation Internet architectures
for many years (e.g. [37]), the deployed accountability techniques are often
static and very rigid.

In some Internet access plans, subscribers are given a maximum amount
of bandwidth they can introduce during a fixed period (typically a month).
Other Internet access plans advertise an unlimited amount of bandwidth
but in fact use a fair use policy, where the introduced traffic may not di-
verge too much from the average generated traffic. There a number of prob-
lems with these accountability approaches. First, they only provide network
fairness on a large time frame (e.g. a month). Subscribers have a certain
amount of traffic that they can introduce into the network during this time
frame and network operators can only assume that they introduce the traffic
gradually. A subscriber who introduces a large peak in the generated traffic
on the first day of the month and avoid peaks for the rest of the month can-
not be held accountable as he does not violate the fair use policy. Second,
current accountability approaches do not take the state of the network into
account. Typically, a subscriber who introduces a large amount of traffic
when the network is already heavy loaded can be considered more harmful
than a subscriber who introduces a large amount of traffic when the net-
work is far from being congested. The inclusion of this additional dimension
is not possible in current accountability techniques.

The accountability technique discussed in this chapter, which we label
profile-based accountability, tries to overcome these problems by character-
izing the subscriber behaviour in real-time. By investigating subscriber pa-
rameters such as the generated traffic with respect to the actual network
load an accurate view on the current subscriber behaviour can be deter-
mined, which allows for an automated and timely response to abuse by

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 73

subscribers (e.g. a subscriber who constantly generates more traffic than
allowed). In this approach, we focus on locally obtained information about
the subscriber; as such, the profile-based accountability technique can be de-
ployed on each node and each node can perform actions to hold a subscriber
accountable.

6.1 Formalization of the problem

The goal of the profile-based accountability technique is to characterize
the momentary subscriber behaviour, and use this information to fairly al-
locate resources. In this context, fairness means that every subscriber re-
ceives the resources he paid for. Hence, there is a clear link with the sub-
scription plan a subscriber has: subscribers that deviate too much from their
expected behaviour, characterized by their subscription, in a way that it
has a negative impact on the network can be punished by receiving less re-
sources than they asked for. We call this expected behaviour the subscribed
profile: although this subscribed profile is linked with the customer’s sub-
scription it is not fixed over time. The subscribed profile can vary depending
on the overall behaviour of other subscribers having the same subscription
and therefore the same subscribed profile.

Profile based accountability features three major tasks. First, the differ-
ent classes of behaviour, which we call profiles, need to be determined dur-
ing the profile learning stage. During this stage, the different profiles are
characterized and defined. The subscriber information (e.g. the introduced
traffic into the network) is monitored and used as input to find different
classes of behaviour. The output of this stage is a list of subscriber profiles
that are present in the network together with a mechanism to map the mon-
itored monitor information to the subscriber profiles (e.g. through a decision
tree). From a machine learning point of view, this phase can be constructed
off-line, although incremental techniques can improve the scalability of the
approach.

These generated subscriber profiles are used for the second task, the
profile prediction stage. At runtime, the monitored subscriber data is con-
tinuously mapped to one of the learned profiles. This mapped profile pro-
vides a behavioural description of the subscriber at a given time. During
this phase, the learned profile is continuously compared to the subscribed
profile and its deviation from this subscribed profile is calculated. This devi-
ation indicates how much the actual behaviour of the subscriber differs from
the expected behaviour (i.e. the subscribed profile) in such a way that it has
detrimental effects on the network condition.

The calculated deviation serves as input for the third and final task, the
resource allocation stage. At this stage, actions are taken to ensure a fair-
ness in resources between subscribers based on their current learned be-

haviour. Subscribers that do not deviate from their subscribed profile will
be favoured in the allocation of resources. As such, subscribers that feature
a large deviation will only receive sufficient resources when the network is
not congested (i.e. there are more resources available that there is demand).
These fairness measures can be implemented by changing the routing and
forwarding plane of the routing engine (e.g. by implementing an adaptive
Active Queue Management Weighted Fair Scheduling router).

The remainder of this chapter is structured as follows. Section 6.2 dis-
cusses the taken approach for the profile learning and prediction stage. The
algorithmic options that are being considered are detailed in Sections 6.3
and 6.4. These algorithmic options have been implemented on the IBBT
iLab, their details are discussed in Section 6.5. Initial results obtained from
this implementation are discussed in Section 6.6, while future work is iden-
tified in Section 6.7.

6.2 Approach taken

The profile learning and prediction stages, described in Section 6.1, re-
quire the mapping of information about the subscribers behaviour, obtained
through monitoring to a profile. For this, the profile needs first to be learned
so that future mappings can occur by following some guidelines (e.g. stated
through a decision tree or rules).

The problem can be modeled analytically as follows. The profile learning
stage needs to determine the function map, where:

Si(t) = map(Mi(t)) (6.1)

Here, Si(t) denotes the subscriber behaviour (i.e. the learned profile) of a
given subscriber i at a given time t. Mi(t) denotes a vector of subscriber
data that was monitored at specific time intervals of which t is the latest
measurement. In other words, Mi(t) contains the latest n measurements at
time t:

Mi(t) = (Moni(t),Moni(t− 1),Moni(t− 2), ...,Moni(t− n+ 1)) (6.2)

, where Moni,t denotes the measurements taken for subscriber i at time t.
Currently, Moni,t is a vector with two elements where the first element de-
notes the traffic introduced by subscriber and the second element represents
the overall network load, calculated by measuring the traffic introduced by
all subscribers. Note that the second element will be the same for each sub-
scriber i at the same time t.

Similar to these action profiles, the subscribed profiles need also to be
learned and determined. These subscribed profiles define the overall be-
haviour of subscribers having the same subscription and are purely deter-

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 75

mined by monitoring the behaviour. As the overall, not one individual, be-
haviour evolves, the subscribed behaviour can evolve as well. However, this
evolution will happen at a much slower pace (e.g. in terms of days) than that
of the action profiles.

The determination of the mapping function map is part of the profile
learning stage. Once determined, it can be used during the profile predic-
tion stage to find the deviation of the mapped profile (output of map) with
the subscriber i’s subscribed profile SPi at a time t:

Di(t) = diff(SPi,map(Mi(t)) (6.3)

Here, D(t) ∈ [0, 1] is a normalized value defining the deviation of subscriber
i at a given time t with his subscribed profile SPi.

As the subscriber behaviour can change over time (e.g. during the course
of a day, a subscriber can access different applications each having different
characteristics with respect to the traffic they introduce into the network)
we split the determination of the mapping function map into two sub-tasks.
First, we will map each Moni(t) value to an action profile Ai(t) describing
the momentary behaviour of a subscriber during a given time frame:

Ai(t) = mapAction(Moni(t)) (6.4)

When the time frame is chosen small enough, we can assume that the sub-
scriber behaviour will not change during that time frame, making the ac-
tion profile semi time independent during that time frame. By applying the
mapAction function to each Moni(t) value we obtain a series of action pro-
files, each describing the subscriber behaviour at a given time slot. These
action profiles can already contain information about the severity of the in-
troduced traffic with respect to the overall network load. By taking this
series of action profiles into consideration we can determine the deviation
from the subscribed profile, through the diffAction function:

Di(t) = diffAction(SPi,
→

Ai(t)) (6.5)

where
→

Ai(t) is a vector of the latest n action profiles:
→

Ai(t)= (Ai(t), Ai(t− 1), Ai(t− 2), ..., Ai(t− n+ 1)) (6.6)

6.3 Determination of action profiles

The mapAction function needs to map real-time monitor values, contain-
ing behavioural information of subscribers, to an action profile. We have
used a clustering and classification algorithm to implement this function.
In the profile learning phase, the clustering and classification algorithms
will be applied on an off-line generated training set. During this phase, the
goal is to derive rules that allow to classify real-time monitor values into
action profiles during the profile prediction phase.

6.3.1 K-means

K-means ([38]) is one of the simplest unsupervised learning algorithms
that solve the well known clustering problem. The procedure follows a sim-
ple and easy way to classify a given data set through a certain number of
clusters (assume k clusters) fixed a priori. The main idea is to define k
centroids, one for each cluster. These centroids should be placed in a cun-
ning way because of different location causes different result. So, the better
choice is to place them as much as possible far away from each other. The
next step is to take each point belonging to a given data set and associate it
to the nearest centroid. When no point is pending, the first step is completed
and an early groupage is done. At this point we need to re-calculate k new
centroids as barycenters of the clusters resulting from the previous step. Af-
ter we have these k new centroids, a new binding has to be done between
the same data set points and the nearest new centroid. A loop has been gen-
erated. As a result of this loop we may notice that the k centroids change
their location step by step until no more changes are done. In other words
centroids do not move any more. Finally, this algorithm aims at minimizing
an objective function, in this case a squared error function. The objective
function

J =
k∑
j=1

n∑
i=1
‖ x(j)

i − cj ‖2

where ‖ x(j)
i −cj ‖2 is a chosen distance measure between a data point x(j)

i

and the cluster center cj, is an indicator of the distance of the n data points
from their respective cluster centers.

The algorithm is composed of the following steps:

1. Place K points into the space represented by the objects that are being
clustered. These points represent initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the K
centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces
a separation of the objects into groups from which the metric to be
minimized can be calculated.

Although it can be proved that the procedure will always terminate, the k-
means algorithm does not necessarily find the most optimal configuration,
corresponding to the global objective function minimum. The algorithm is
also significantly sensitive to the initial randomly selected cluster centers.
The k-means algorithm can be run multiple times to reduce this effect.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 77

6.3.2 C4.5 Decision Tree Classifcation

The Simple K-Means algorithm is a great way to cluster data, however,
in order to efficiently classify the real-time data during the profile prediction
phase, a decision tree is needed. For this we will use the C4.5 Decision Tree
Classification algorithm[39].

C4.5 builds decision trees from a set of training data in the same way
as ID3, using the concept of information entropy. The training data is a
set S = s1, s2, ... of already classified samples. Each sample si = x1, x2, ...
is a vector where x1, x2, ... represent attributes or features of the sample.
The training data is augmented with a vector C = c1, c2, ... where c1, c2, ...
represent the class to which each sample belongs.

At each node of the tree, C4.5 chooses one attribute of the data that most
effectively splits its set of samples into subsets enriched in one class or the
other. Its criterion is the normalized information gain (difference in entropy)
that results from choosing an attribute for splitting the data. The attribute
with the highest normalized information gain is chosen to make the decision.
The C4.5 algorithm then recurses on the smaller sublists.

This algorithm has a few base cases:

• All the samples in the list belong to the same class. When this happens,
it simply creates a leaf node for the decision tree saying to choose that
class.

• None of the features provide any information gain. In this case, C4.5
creates a decision node higher up the tree using the expected value of
the class.

• Instance of previously-unseen class encountered. Again, C4.5 creates
a decision node higher up the tree using the expected value.

In pseudocode the algorithm is:

1. Check for base cases

2. For each attribute a
Find the normalized information gain from splitting on a

3. Let abest be the attribute with the highest normalized gain

4. Create a decision node that splits on abest

5. Recurse on the sublists obtained by splitting on abest, and add those
nodes a children of node

We used an open source Java implementation of the C4.5 algorithm in
the Weka data mining tool[40], i.e. J48.

6.3.3 Employed attributes

To obtain the decision tree, generated by the C4.5 algorithm, as part of
themapAction function we apply the C4.5 on a dataset that characterizes the
behaviour of each subscriber. Currently, the following attributes are used to
perform the clustering:

• The flow rate generated by each subscriber averaged over a timeframe

• The flow size generated by each subscriber (characterized by the cu-
mulated size of packets) in the last timeframe

• The overall link load, characterized by the sum of all individually gen-
erated traffic. This link load is calculated by summing up all bytes and
averaging over a timeframe

• The number of active connections

• The number of congested packets generated by each subscriber, as a
metric for the congestion, reported during the last timeframe

• The total number of packets generated by each subscriber, reported
during the last timeframe

6.4 Deviation of subscribed profile

Once the subscribed profile and action profiles are determined, based on
the algorithmic options detailed in the previous section, determining the
deviation is straightforward. This is illustrated in Figure 6.1, which shows
a visualization of the action profile and subscribed profile clustering and the
evolution of a single subscriber over time (characterized by the arrow).

As the subscribed profile will be determined at a slower pace, a wider
variety of behaviours will be taken into account and the cluster will natu-
rally be much larger than that of an action profile which only takes a small
timeframe into account. Hence, the subscribed profile will define the bound-
ary of what action profiles an individual subscriber may ’visit’. Subscribers
are allowed to visit different action profiles, as long as they fall within those
boundaries. This is illustrated in Figure 6.1, where the arrows represent
the evolution to other action profiles. In this case, the evolution from action
profile 4 to action profile 8 causes the subscriber to be out of his subscribed
profile and hence out of profile. The deviation can be easily calculated using
a distance function, calculated from the subscribed profile.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 79

6.5 Implementation

6.5.1 Network model

The network is assumed to be a simple tree model. There is a single root
node, and on each level there are a fixed number of branches. Links on the
same level, have the same bandwidth. The servers are all located on the root
node, while the clients are located on the leaf nodes. At any given moment,
there is only 1 user active on each "client" leaf node.

This simplicity of this model still allows for enough realism, and is help-
ful in development and result processing. The models constraints could be
removed without consequences for most of the code.

6.5.2 Traffic generation

As the individual subscriber behaviour is analyzed and made dependent
on the type of applications a subscriber accesses, it is important to have
realistic traffic traces. All tests were carried out on the iLab.t Virtual Wall
with a distributed traffic generation tool, specifically design for the ECODE
project, that is able to generate traffic by instructing real applications. To
generate traffic using the Virtual wall, a software tool has been developed
which can setup everything needed for the simulation, using a description of
the scenario to emulate. There are many different tasks which this tool must
solve, and so the code is split into parts accordingly. Each task is described
in a subsection below.

6.5.2.1 Scenario description input

The scenario to emulate is described in a simple XML document. An
example is given in Figure 6.3. A GUI frontend for generating this XML file
has been created. It is shown in Figure 6.2

The XML description is processed by a ruby script, which creates all files
needed to run the experiment on the virtual wall.

6.5.2.2 Converting a requested emulated topology into a wall topol-
ogy

The scenario contains a description of the topology to emulate, using
physical nodes on the virtual wall. Due to limitations of the virtual wall,
this physical topology can be different than the emulated topology. The most
important limitations are a maximum number of physical interfaces in each

wall node, and a maximum bandwidth of 1 GB over each link. A wall node
can also only simulate a certain number of clients (this limit needs to be
determined experimentally). Once a working topology has been determined,
an NS description of this topology is written. This file is used by the virtual
wall managment software to allocate the nodes for the simulation.

6.5.2.3 Assigning IPs and setting up routing.

The simulated network requires IPs and networks to be assigned in the
simulated network. Currently, a minimum of networks, as needed by the
wall topology, is used. It is also possible to use networks corresponding to
the emulated topology, but this creates bigger routing tables. A ruby script
determines and assigns networks. It then creates bash scripts that, in the
pre-simulation setup of the simulation, are called in order to set up rout-
ing. These scripts use the Linux "ip" command. Because multiple emulated
nodes can be aggrated on a single physical node, multiple IP addresses can
be assigned to the same node. This creates a problem, as client applica-
tions, used for simulating clients cannot always use a user-specifiable IP.
In order to force these applications to use a certain client IP a trick has to
be used. Our trick is to assign multiple server addresses, and specify the
routing on the physical node so that each server address corresponds with a
client address. This way, all client applications CAN specify their source IP,
by selecting a matching server IP.

6.5.2.4 Setting up bandwidth limitations

Bandwidth limitations are set up using the Linux traffic shaper "TC". TC
supports various sorts of complex egress queues, and filters that determine
which packet goes to which queue. By shaping both directions of traffic a
link (thus shaping the egress on all connected nodes), the bandwidth limita-
tion on that link is emulated.

TC uses a cryptic and confusing syntax. To minimize problems imple-
menting the bandwidth limitations, "TCNG" (TC Next Generation) is used.
This is a sort of compiler, which translates a higher level, much "friendlier"
language into TC rules. The TCNG files are generated by a ruby script.

6.5.2.5 Simulating servers

Servers are emulated using actual server software such as apache and
xstreamer. For youtube emulation, the apache server uses a plugin, to limit
the outgoing rate per connection to 1Mbit/s, which is the same as youtube.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 81

6.5.2.6 Client simulation

Clients are simulated using a ruby script which calls other scripts to sim-
ulate behavior. The ruby script takes an XML file specifying which behavior
occurs between which hours as input. At the correct times, scripts for simu-
lating behavior are started and stopped.

6.5.2.7 Network monitoring

The network is monitored using a custom tool, written in C++. This tool
uses libpcap for monitoring network packets. Several monitoring intervals
can be specified, and for each such interval a logfile is specified. When the
requested time has passed, statistics about the data received during that
time interval are written to the corresponding log file. Multiple interfaces
can be monitored at once.

6.5.2.8 Starting and stopping simulations, and moving results

When the simulation starts, bash scripts are started on each node, which
configure the simulation, and then start it. The configuration step includes
installing the needed software, configuring it if needed, setting up ip ad-
dresses, configuring routing, and bandwidth shaping. When the simulation
is complete, the scripts move the results from a temporary location, to the
appropriate final location.

6.6 Experimental results

We have emulated 2 initial scenarios, and using the monitoring data we
obtained, we examined the clustering results. The investigated network
topology consisted of a server node, with 5 links of 25 Mbit/s to the routers,
and from each router links of 5 Mbit/s to the clients. These scenarios feature
3 type of subscriber behaviours:

• Day web subscribers: Surf the web all day, but not in the evening. 75%
of subscribers.

• Evening youtube subscribers: Watch youtube all evening. 10% of sub-
scribers.

• Evening Downloaders: Download large files in the evening. 15% of
subscribers.

In total, there are 200 of these subscribers in scenario A. The bandwidth
usage is shown in Figure 6.4.

Figure 6.5 shows the dataset for this scenario after classification using
the J48 algorithm in Weka. Based on the total bandwidth and the user’s
share of this total bandwidth, the algorithm tries to predict the correspond-
ing action profile through classification. A square point indicates that the
point was wrongly classified, while crosses mark a correct classification. In
this case the J48 algorithm classified 99.3% of the measurements correctly.

Figure 6.6 shows the corresponding decision tree for this classification.
As can be seen, a simple decision tree can be constructed that allows for
a straightforward implementation of the mapAction function. This decision
tree can then be used in the profile prediction phase, which is part of future
work, as discussed in the next section.

6.7 Future work

The obtained results discussed in Section 6.6 provide an initial indication
of the accuracy of the classification algorithms. Future work will be carried
out in WP4 and is divided into three main areas: First, the evaluation will
be extended to investigate other scenarios and other network configurations.
This will allow to obtain more realistic results of a wide bouquet of configu-
rations. Second, as the evaluation is currently only limited to the accuracy
of the profile learning stage, the deviation of the subscribed profile will be
taken into account as well, following the described algorithmic options in
Section 6.4. Third, the effect on the overall network performance will be in-
vestigated as well during the third and final phase: the resource allocation
phase.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 83

Figure 6.1: Determination of the deviation of a profile

Figure 6.2: Example of Scenario Description GUI

<?xml version=" 1.0 " encoding= ’UTF−8 ’ ?>
<experiment name=" pro f i l e−config −1.1a">

<wall_aggregation_l imits>
< c l i e n t s >100< / c l i e n t s >

< / wall_aggregation_l imits>

<simulationtime>120 minutes< / simulationtime>
<usercount>50< / usercount>

<userdistr ibut ion>
<usergroup p r o f i l e ="1" behaviour="web" percent="50" / >
<usergroup p r o f i l e ="1" behaviour=" youtube " percent="50" / >

< / userdistr ibut ion>

<topology>
< leve l nr="1" bw="25 Mbps" l inks="5" / >
< leve l nr="2" bw="5 Mbps" l inks="10" / >

< / topology>

<monitoring>
<simulation_interval>

30 seconds
< / s imulation_interval>
<emulated_interval>

1 hour
< / emulated_interval>

< / monitoring>
< / experiment>

Figure 6.3: Example of XML Scenario Description

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 85

Figure 6.4: Bandwidth usage of scenario A

Total Link Bandwidth Usage (%)

U
se
rs
’s
 S
ha
re
 in
 to
ta
l l
in
k
ba
nd
w
id
th
 (%
)

Figure 6.5: Classification done by means of the J48 algorithm

Figure 6.6: Decision Tree generated by means of the J48 algorithm

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 87

Chapter 7

Conclusion

In this deliverable we have described the research work achieved so far in
task 3.2 that is dedicated to the experimentation on the technical objective 2
(TO2) addressing machine learning techniques for path availability estima-
tion (chapters 2 and 3), for improving network recoverability and resilience
(chapters 4 and 5), and profile-based accountability (chapter 6).

In each chapter, the problem addressed by the use case is formalized and
the relevant machine learning (ML) techniques are used to provide appro-
priate solutions. The proposed ML-based algorithms have been evaluated
by simulations, which can be seen as first high-level prototypes. For use-
case b1, first implementations in the XORP environment have already been
developed and locally tested.

The main contributions can be summarized as follows:

• We explain how IDIPS (our path ranking service) has been imple-
mented within XORP, an extensible open source routing platform. Our
implementation is based on three modules: Ranking, Prediction, and
Measurement. The Ranking module is in charge of dispatching re-
quests from Clients to other modules. The Measurement module is
used to measure path performance metrics, while the Prediction mod-
ule uses a Machine Learning technique (Normalized Least Squares)
to predict path performance metrics, so that we reduce the amount of
traffic injected in the network. In addition, we provide a first descrip-
tion on how we plan to evaluate IDIPS on the iLab platform.

• Internet Coordinate Systems (ICS) are promising techniques to predict
unknown network distances (typically delays) from a limited number of
measurements. Most ICS algorithms are based on metric space embed-
ding and suffer from the inability to represent distance asymmetries
and Triangle Inequality Violations (TIVs). To overcome these draw-
backs, we formulate the problem of network distance prediction as a
machine-learning problem, namely guessing the missing elements of a

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 89

distance matrix, and solve it by matrix factorization. A distinct feature
of our approach [1], called Decentralized Matrix Factorization (DMF),
is that it is fully decentralized. The factorization of the incomplete dis-
tance matrix is collaboratively and iteratively done at all nodes with
each node retrieving only a small number of distance measurements.
There are no special nodes such as landmarks nor a central node where
the distance measurements are collected and stored. We compare DMF
with two popular ICS algorithms: Vivaldi and IDES. The former is
based on metric space embedding, while the latter is also based on ma-
trix factorization but uses landmarks. Experimental results show that
DMF achieves competitive accuracy with the double advantage of hav-
ing no landmarks and of being able to represent distance asymmetries
and TIVs. The knowledge of estimated delays between nodes can also
be useful to select better paths for real-time applications. We had pro-
posed some methods that rely on the nodes running an ICS to detect
routing shortcuts in networks. We have now evaluated more precisely
the quality of the results provided by these methods. Finally we ex-
plain a first implementation of an ICS in the XORP environment and
discuss some relevant aspects of the current implementation. We also
analyze the memory and performance cost of our module. Finally we
explain how to improve and evolve this module for better integration
and tight interaction with the ECODE architecture.

• An accurate understanding or characterization of network traffic dy-
namics can improve network efficiency. Long-term traffic characteri-
zation enables network operators to dimension their networks accord-
ingly; short-term network traffic trends enable dynamic rerouting tech-
niques to efficiently use alternative paths in a network. We use state-
of-the-art network traffic models to model network traffic in a very
short timeframe (sub-second) as observed by an IP router during the
process of updating routing entries after failure detection. We study
the highly sensitive interaction of network traffic with the IP router
update process in detail and present a mathematical model to charac-
terize this process. The goal of this model is to optimize the process
of updating routing entries in an IP router with minimal packet loss.
For this, two optimization heuristics are formulated and are evaluated
together with state-of-the-art alternatives in a realistic simulation en-
vironment. The trade-off of several parameters in the model is char-
acterized, and we show that a gain in performance (decrease in packet
loss) can be achieved.

• In the OSPF data mining use case for shared risk link groups (SRLG)
identification, we use machine learning technique at the routers to
study the link state protocol (e.g., OSPF) data to predict the existence
of SRLG in the network. In particular, we use the correlation between
different link state updates (LSUs) issued by different network nodes
(routers) upon failure. The concerned network router then runs a
novel Bayesian network-based statistical learning process to construct

a state space model for representing and learning about the possible
existence of SRLGs. The decision of this online learning is transferred
to the routing information base (RIB) so that it can accordingly mod-
ify the routing table for the entire SRLG upon failure detection of one
of the candidate link of that particular SRLG and hence reduce the
protection switching time.

• With respect to the profile based accountability use case, this docu-
ment presents an analytical model of the problem. This model identi-
fies the different functions that need to be implemented through ma-
chine learning solutions. Different algorithmic options for implement-
ing these functions are described and the way they can be applied to
the specific problem is detailed. Furthermore, we discuss the experi-
mental set-up that has been built and that includes a traffic generator,
specifically built in the context of the ECODE project, that allows gen-
erating traffic traces on the iLab.t Virtual Wall based on the behaviour
of actual applications. The results of initial tests that apply the ma-
chine learning algorithms on the obtained traffic traces are presented.

Our future work will be organized along two axes:

• For each use case, we will continue to investigate machine mearning
techniques to further improve our results.

• Prototype codes in XORP will be developed for use cases b2 and b3, and
improved for use case b1. All of them will have to be fully tested over
the iLab.t Virtual Wall tested and possibly PlanetLab. Then, in WP4
they will be integrated into the common ECODE architecture defined
in WP2. When these real implementations are integrated, a second
stage of tests and validations will be carried out to check the integra-
tion and refine the ECODE architecture, if needed.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 91

Bibliography

[1] Y. Liao, P. Geurts, and Leduc G. Network distance prediction based on
decentralized matrix factorization. In IFIP Networking, LNCS, Chen-
nai, India, May 2010.

[2] G. Leduc. Design and implementation of technical objective 2. Deliver-
able FP7-ICT-2007-2-1.6-223936-D3.4, ECODE, October 2009.

[3] M. Handley, O. Hodson, and E. Kholer. XORP goals and architecture.
In Proc. ACM SIGCOMM Hot Topics in Networking (HotNets), October
2002.

[4] D. Saucez, B. Donnet, L. Iannone, and O. Bonaventure. Interdomain
traffic engineering in a locator/identifier separation context. In Proc.
Internet Network Management Workshop (INM), October 2008.

[5] L. Mathy. Cognitive engine experimental low-level design. Deliverable
D2.2, ECODE, May 2010.

[6] David Andersen Hari, David Andersen, Hari Balakrishnan, Frans
Kaashoek, and Robert Morris. Resilient overlay networks. pages 131–
145, 2001.

[7] Azureus Bittorrent. http://azureus.sourceforge.net.

[8] Benoit Donnet, Bamba Gueye, and Mohamed Ali Kaafar. A survey on
network coordinates systems, design, and security. To appear in IEEE
Communication Surveys and Tutorial, Dec 2010.

[9] T. S. E. Ng and H. Zhang. Predicting Internet network distance with
coordinates-based approaches. In Proc. IEEE INFOCOM, New York,
NY, USA, June 2002.

[10] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized
network coordinate system. In Proc. ACM SIGCOMM, Portland, OR,
USA, August 2004.

[11] H. Zheng, E. K. Lua, M. Pias, and T. Griffin. Internet Routing Poli-
cies and Round-Trip-Times. In Proc. the PAM Conference, Boston, MA,
USA, April 2005.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 93

http://azureus.sourceforge.net

[12] S. Lee, Z. Zhang, S. Sahu, and D. Saha. On suitability of euclidean
embedding of internet hosts. SIGMETRICS, 34(1):157–168, 2006.

[13] G. Wang, B. Zhang, and T. S. E. Ng. Towards network triangle in-
equality violation aware distributed systems. In Proc. the ACM/IMC
Conference, pages 175–188, San Diego, CA, USA, oct 2007.

[14] Suman Banerjee, Timothy G. Griffin, and Marcelo Pias. The inter-
domain connectivity of PlanetLab nodes. In Proc. of the Passive and
Active Measurement Workshop – PAM’2004, Lecture Notes in Com-
puter Science (LNCS) 3015, Antibes Juan-les-Pins, France, April 2004.

[15] Yun Mao, Lawrence Saul, and Jonathan M. Smith. Ides: An inter-
net distance estimation service for large networks. IEEE Journal On
Selected Areas in Communications (JSAC), Special Issue on Sampling
the Internet, Techniques and Applications, 24(12):2273–2284, Dec
2006.

[16] Yang Chen, Xiao Wang, Xiaoxiao Song, Eng Keong Lua, Cong Shi, Xi-
aohan Zhao, Beixing Deng, and Xing Li. Phoenix: Towards an accurate,
practical and decentralized network coordinate system. In Proc. IFIP
Networking Conference, Aachen, Germany, May 2009.

[17] Gene H. Golub and Charles F. Van Loan. Matrix computations (3rd
ed.). Johns Hopkins University Press, Baltimore, MD, USA, 1996.

[18] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative
matrix factorization. In NIPS, pages 556–562. MIT Press, 2001.

[19] A simulator for peer-to-peer protocols. http://www.pdos.lcs.mit.
edu/p2psim/index.html.

[20] B. Wong, A. Slivkins, and E. Sirer. Meridian: A lightweight net-
work location service without virtual coordinates. In Proc. the ACM
SIGCOMM, aug 2005.

[21] Liying Tang and Mark Crovella. Geometric exploration of the landmark
selection problem. In Proc. of the Passive and Active Measurement
Workshop – PAM’2004, Lecture Notes in Computer Science (LNCS)
3015, Antibes Juan-les-Pins, France, April 2004.

[22] Barry Raveendran Greene and Philip Smith. Cisco ISP Essentials.
Cisco Press, 2002.

[23] Bamba Gueye and Guy Leduc. Resolving the noxious effect of churn on
internet coordinate systems. In Lectures Notes in Computer Science
5918, pages 162–173, Zurich, Switzerland, December 2009.

[24] Pierre Francois, Clarence Filsfils, John Evans, and Olivier Bonaven-
ture. Achieving sub-second igp convergence in large ip networks. ACM
SIGCOMM Computer Communication Review, 35(3):33–44, July 2005.

http://www.pdos.lcs.mit.edu/p2psim/index.html
http://www.pdos.lcs.mit.edu/p2psim/index.html

[25] Murad S. Taqqu, Walter Willinger, and Robert Sherman. Proof of a fun-
damental result in self-similar traffic modeling. SIGCOMM Comput.
Commun. Rev., 27(2):5–23, 1997.

[26] Will E. Leland, Walter Willinger, Murad S. Taqqu, and Daniel V. Wil-
son. On the self-similar nature of ethernet traffic. SIGCOMM Comput.
Commun. Rev., 25(1):202–213, 1995.

[27] V. Paxson and S. Floyd. Wide area traffic: the failure of poisson model-
ing. Networking, IEEE/ACM Transactions on, 3(3):226–244, Jun 1995.

[28] Mark E. Crovella and Azer Bestavros. Self-similarity in world wide
web traffic: evidence and possible causes. IEEE/ACM Trans. Netw.,
5(6):835–846, 1997.

[29] N. Sadek, A. Khotanzad, and T. Chen. Atm dynamic bandwidth allo-
cation using f-arima prediction model. In Computer Communications
and Networks, 2003. ICCCN 2003. Proceedings. The 12th International
Conference on, pages 359–363, Oct. 2003.

[30] Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic data repos-
itory at the wide project. In ATEC ’00: Proceedings of the annual
conference on USENIX Annual Technical Conference, pages 51–51,
Berkeley, CA, USA, 2000. USENIX Association.

[31] R Development Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vi-
enna, Austria, 2009. ISBN 3-900051-07-0.

[32] Rob J. Hyndman and Yeasmin Khandakar. Automatic time series fore-
casting: the forecast package for r. Monash Econometrics Working Pa-
pers 6/07, Monash University, Department of Econometrics and Busi-
ness Statistics, June 2007.

[33] Hasslett and Ratery. Maximum likelihood estimation of the parame-
ters of a fractionally differenced arima(p,d,q) model. Applied Statistics,
1989.

[34] W. Tavernier, D. Papadimitriou, D. Colle, M. Pickavet, and Demeester
P. Optimizing the ip router update process with traffic-driven updates.
In Design of Reliable Communication Networks (DRCN), pages 25–28,
Washington D.C., USA, October 2009.

[35] B. Zhou, D. He, and Z. Sun. Network traffic modeling and prediction
with arima/garch, 2005.

[36] A. Papoulis and S.U. Pillai. Probability, Random Variables, and
Stochastic Processes - 4th edition. McGraw-Hill, 2001.

[37] R. Braden, D. Clark, S. Shenker, and J. Wrowclawski. Developing a
next-generation Internet architecture. In White paper, DARPA, July
2000.

FP7-223936 ECODE Project - Deliverable D.3.5 - Experimentation of Technical Objective 2 Page 95

[38] J.B. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In Proceedings of 5-th Berkeley Symposium on
Mathematical Statistics and Probability, 1967.

[39] J. Quinlan. C4.5: Programs fir Machine Learning. Morgan Kaufmann,
1992.

[40] M. Hall, F. Eibe, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: An update. SIGKDD
Explorations, 11(1), 2009.

	Introduction
	Scope of Deliverable
	Structure of Document

	Intelligent Path Ranking Using IDIPS
	XORP Implementation
	Overview
	Ranking
	Measurement
	Prediction

	iLab Planned Experimentations

	Delay estimation and delay-based path selection and routing
	Network Distance Prediction Based on Decentralized Matrix Factorization
	Introduction
	Matrix Factorization for Network Distance Prediction
	Decentralized Matrix Factorization for Network Distance Prediction
	Experiments and Evaluations
	Parameter Tuning
	Analysis of Convergence and Stability
	Comparisons with Vivaldi and IDES

	Conclusions and Future Works

	Finding routing shortcuts
	Problem Formalization
	Implementation
	Experimentation and evaluation
	Performance of our routing shortcut detection criteria
	Detection of the best shortcuts
	Ranking of the detected nodes

	Conclusion and Future Work

	Implementation of an Internet Coordinates System within XORP
	Introduction
	General overview
	Module place within XORP architecture
	Organization of the Vivaldi Module

	Discussions
	About message exchanges
	About bootstrapping
	About choosing the peers
	About measurement

	Evaluation
	Memory cost
	Performance

	Future work

	Minimizing packet loss during re-routing
	Introduction
	Problem statement
	Formalization of the RUP under changing traffic conditions
	Packet loss
	Heuristics for minimizing packet loss during the RUP
	Fixed batch size
	Variable batch size

	Modeling traffic dynamics
	AutoRegressive Moving Average models
	(Fractionally) Integrated models

	Experimental validation
	Platform choice
	Network traffic analysis and preprocessing
	Fitting traffic models
	Packet-loss minimization
	Strategy vs. packet loss/recovery time
	Batch size vs. packet loss/recovery time
	Traffic model vs. packet loss
	Swapping time vs. packet loss

	Conclusion

	Data Mining with OSPF updates to identify shared risk link group (SRLG)
	Formalization of the technical problem
	Learning phase
	Decision making phase
	Protection time reduction phase
	Result and Discussion

	Profile-based accountability
	Formalization of the problem
	Approach taken
	Determination of action profiles
	K-means
	C4.5 Decision Tree Classifcation
	Employed attributes

	Deviation of subscribed profile
	Implementation
	Network model
	Traffic generation
	Scenario description input
	Converting a requested emulated topology into a wall topology
	Assigning IPs and setting up routing.
	Setting up bandwidth limitations
	Simulating servers
	Client simulation
	Network monitoring
	Starting and stopping simulations, and moving results

	Experimental results
	Future work

	Conclusion
	References

